20.若函數(shù)f(x)=|sinx+$\frac{2}{3+sinx}$+t|(x,t∈R),對于任意的t∈R均存在x0使得f(x0)≥m,則m的最大值是(  )
A.$\frac{3}{4}$B.2$\sqrt{2}$-3C.2$\sqrt{2}$D.0

分析 化簡sinx+$\frac{2}{3+sinx}$=sinx+3+$\frac{2}{3+sinx}$-3,可得0≤sinx+3+$\frac{2}{3+sinx}$-3≤$\frac{3}{2}$,從而求得f(x)的最小值為0,得到使f(x0)≥m成立的m的最大值.

解答 解:∵sinx+$\frac{2}{3+sinx}$=sinx+3+$\frac{2}{3+sinx}$-3,
∵-1≤sinx≤1,
∴2≤sinx+3≤4,
∴3≤sinx+3+$\frac{2}{3+sinx}$≤$\frac{9}{2}$,
∴0≤sinx+3+$\frac{2}{3+sinx}$-3≤$\frac{3}{2}$,
∴對任意的t∈R,f(x)的最小值為0.
∴使f(x0)≥m成立的m的最大值是0.
故選:D.

點評 本題考查了三角函數(shù)的單調(diào)性及分段函數(shù)的應用,同時考查了正弦函數(shù)的性質(zhì)及整體思想與分類討論的思想,是中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

10.已知函數(shù)f(x)=$\left\{\begin{array}{l}{\frac{a}{x-1},x≤0}\\{lgx,x>0}\end{array}\right.$,其中a≠0.若f(x)=0,則x=1;若方程f(f(x))=0有唯一解,則實數(shù)a的取值范圍是(-1,0)∪(0,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.某三棱錐的三視圖如圖所示,則該三棱錐的外接球的體積是( 。
A.$\frac{4π}{3}$B.$\frac{8π}{3}$C.$\frac{{5\sqrt{5}π}}{6}$D.$\sqrt{5}π$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知$\frac{1+tan(θ+720°)}{1-tan(θ-360°)}$=3+2$\sqrt{2}$,求:[cos2(π-θ)+sin(π+θ)•cos(π-θ)+2sin2(θ-π)]•$\frac{1}{co{s}^{2}(-θ-2π)}$的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知函數(shù)f(x)=sin(x+$\frac{π}{4}$)cosx.
(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)若f(α)=$\frac{3\sqrt{2}}{8}$,求sin4α的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.若直線ax+y-1=0和直線2x+(a+1)y+1=0垂直,則實數(shù)a等于( 。
A.-$\frac{1}{3}$B.$\frac{1}{3}$C.-$\frac{1}{4}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知數(shù)列{an}的前n項和Sn,點(n,$\frac{{S}_{n}}{n}$)在直線y=$\frac{1}{2}$x+$\frac{1}{2}$上.數(shù)列{bn}滿足bn+2-2bn+1+bn=0(n∈N*),且b3=5,其前9項和為63.
(1)求數(shù)列{an},{bn}的通項公式;
(2)設cn=$\frac{{a}_{n}}{_{n}}$+$\frac{_{n}}{{a}_{n}}$,求數(shù)列{cn}的前n項和為Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.給出下列三個命題:
①“若x2+2x-3≠0,則x≠-3”為假命題;
②若p∨q為真命題,則p,q均為真命題;
③命題p:?x∈R,3x>0,則¬p:?x0∈R,3${\;}^{{x}_{0}}$≤0.
其中正確的個數(shù)是( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.已知m∈R,p:方程$\frac{{x}^{2}}{2}$+$\frac{{y}^{2}}{m}$=1表示焦點在y軸上的橢圓;q:在復平面內(nèi),復數(shù)z=1+(m-3)i對應的點在第四象限.若p∧q為真,則m的取值范圍是(2,3).

查看答案和解析>>

同步練習冊答案