A. | $\frac{3}{4}$ | B. | 2$\sqrt{2}$-3 | C. | 2$\sqrt{2}$ | D. | 0 |
分析 化簡sinx+$\frac{2}{3+sinx}$=sinx+3+$\frac{2}{3+sinx}$-3,可得0≤sinx+3+$\frac{2}{3+sinx}$-3≤$\frac{3}{2}$,從而求得f(x)的最小值為0,得到使f(x0)≥m成立的m的最大值.
解答 解:∵sinx+$\frac{2}{3+sinx}$=sinx+3+$\frac{2}{3+sinx}$-3,
∵-1≤sinx≤1,
∴2≤sinx+3≤4,
∴3≤sinx+3+$\frac{2}{3+sinx}$≤$\frac{9}{2}$,
∴0≤sinx+3+$\frac{2}{3+sinx}$-3≤$\frac{3}{2}$,
∴對任意的t∈R,f(x)的最小值為0.
∴使f(x0)≥m成立的m的最大值是0.
故選:D.
點評 本題考查了三角函數(shù)的單調(diào)性及分段函數(shù)的應用,同時考查了正弦函數(shù)的性質(zhì)及整體思想與分類討論的思想,是中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{4π}{3}$ | B. | $\frac{8π}{3}$ | C. | $\frac{{5\sqrt{5}π}}{6}$ | D. | $\sqrt{5}π$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -$\frac{1}{3}$ | B. | $\frac{1}{3}$ | C. | -$\frac{1}{4}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com