已知函數(shù)y=f(x)是定義在R上的奇函數(shù),且當(dāng)x∈(-∞,0)時(shí)不等式f(x)+xf′(x)<0成立,若a=3•f(3),b=f(1),c=-2f(-2).則a,b,c的大小關(guān)系是( 。
A、a>b>c
B、c>a>b
C、c>b>a
D、a>c>b
考點(diǎn):函數(shù)的單調(diào)性與導(dǎo)數(shù)的關(guān)系,奇偶性與單調(diào)性的綜合
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:構(gòu)造函數(shù)F(x)=xf(x),求導(dǎo)數(shù),判斷單調(diào)性求解.
解答: 解:令函數(shù)F(x)=xf(x),則F′(x)=f(x)+xf′(x)
∵f(x)+xf′(x)<0,∴F(x)=xf(x),x∈(-∞,0)單調(diào)遞減,
∵y=f(x)是定義在R上的奇函數(shù),
∴F(x)=xf(x),在(-∞,0)上為減函數(shù),
可知F(x)=xf(x),(0,+∞)上為增函數(shù)
∵a=3•f(3),b=f(1),c=-2f(-2)
∴a=F(-3),b=F(-1),c=F(-2)
F(-3)>F(-2)>F(-1),
即a>c>b
故選:D
點(diǎn)評(píng):本題考察了復(fù)合函數(shù)的求導(dǎo),導(dǎo)數(shù)在單調(diào)性中的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-ax+a的最小值為1.
(1)求a的值;
(2)求f(x)在[0,3]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=alnx-bx2
(Ⅰ)當(dāng)a=2,b=
1
2
時(shí),求函數(shù)f(x)在區(qū)間[
1
e
,e]上的最大值;
(Ⅱ)當(dāng)b=0時(shí),若不式f(x)≥m+x對所有的a∈[0,
3
2
],x∈(1,e2]都成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+(m+2)x+5-m有兩個(gè)零點(diǎn),且都大于2,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

算法流程圖如圖所示,其輸出結(jié)果是( 。
A、124B、125
C、126D、127

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=x2+ax+b,A={x|f(x)=x}={a},由元素(a,b)構(gòu)成的集合為M,求M.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果函數(shù)f(x)=x2+(a+2)x+b,x∈(a,b)的圖象關(guān)于直線x=1對稱,則函數(shù)f(x)的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
2
x+1
的遞減區(qū)間是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=|log2x|,當(dāng)0<m<n時(shí),有f(n)=f(m)=2f(
m+n
2
).
(1)求mn的值;
(2)求證:1<(n-2)2<2.

查看答案和解析>>

同步練習(xí)冊答案