13.拋物線y2=4x的焦點為F,斜率為1的直線l過點F,且與拋物線相交于A,B兩點,M是AB中點.
(1)求弦AB的長;
(2)若MH垂直于準(zhǔn)線,垂足為H.求∠AHB的度數(shù).

分析 (1)根據(jù)拋物線方程求得拋物線的焦點坐標(biāo),進而根據(jù)點斜式求得直線的方程與拋物線方程聯(lián)立,消去y,根據(jù)韋達定理求得x1+x2=的值,進而根據(jù)拋物線的定義可知|AB|=x1+$\frac{p}{2}$+x2+$\frac{p}{2}$=x1+x2+p,求得答案.
(2)過A,B做準(zhǔn)線的垂線,垂足分別為P,Q,則|AP|=|AF|,|BQ|=|BF|,得出以AB為直徑的圓M與準(zhǔn)線相切于H,即可得出結(jié)論.

解答 解:(1)拋物線焦點為(1,0),且斜率為1,
則直線方程為y=x-1,代入拋物線方程y2=4x得
x2-6x+1=0,設(shè)A(x1,y1),B(x2,y2
∴x1+x2=6
根據(jù)拋物線的定義可知|AB|=x1+$\frac{p}{2}$+x2+$\frac{p}{2}$=x1+x2+p=6+2=8;
(2)過A,B做準(zhǔn)線的垂線,垂足分別為P,Q,則|AP|=|AF|,|BQ|=|BF|,
∴|AB|=|AF|+|BF|=|AP|+|BQ|,
∵M是AB的中點,
∴|MH|=$\frac{|AP|+|BQ|}{2}$=4,
∴以AB為直徑的圓M與準(zhǔn)線相切于H,
∴∠AHB=90°.

點評 本題主要考查了直線與圓錐曲線的關(guān)系,拋物線的簡單性質(zhì).關(guān)鍵是:將直線的方程代入拋物線的方程,消去y得到關(guān)于x的一元二次方程,再結(jié)合根與系數(shù)的關(guān)系,利用弦長公式即可求得|AB|值,從而解決問題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知f(x)=2sin2x+2sinxcosx,則f(x)的最小正周期和一個單調(diào)減區(qū)間分別為(  )
A.2π,[$\frac{3π}{8}$,$\frac{7π}{8}$]B.π,[$\frac{3π}{8}$,$\frac{7π}{8}$]C.2π,[-$\frac{π}{8}$,$\frac{3π}{8}$]D.π,[-$\frac{π}{8}$,$\frac{3π}{8}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.己知不等式|x一1|≤1的解集為A,關(guān)于x的不等式$\frac{x-a}{x+1}$<0的解集為B,
(1)當(dāng)a=1時,求集合A∪B;
(2)若對于任意的實數(shù)x0∈A,都有x0∈B,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知△ABC中,a=5,b=4,C=60°,求:
(1)$\overrightarrow{BC}•\overrightarrow{CA}$;
(2)求|$\overrightarrow{AB}$|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知變量x,y有如下觀察數(shù)據(jù)
x0134
y2.44.54.66.5
若y對x的回歸方程是$\stackrel{∧}{y}$=0.83x+a,則a=( 。
A.2.4B.2.84C.3.67D.3.95

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.“B=60°”是“△ABC三個內(nèi)角A、B、C成等差數(shù)列”的( 。
A.充分而不必要條件B.充要條件
C.必要而不充分條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.關(guān)于x、y的方程組$\left\{\begin{array}{l}(m+1)x-y-3m=0\\ 4x+(m-1)y+7=0\end{array}\right.$( 。
A.有唯一的解B.有無窮多解
C.由m的值決定解的情況D.無解

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知F1、F2分別為橢圓C1:$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{^{2}}$=1(a>b>0)的上、下焦點,其中F1也是拋物線C2:x2=4y的焦點,點M是C1與C2在第二象限的交點,且|MF1|=$\frac{5}{3}$.
(I)求橢圓的方程;
(II)過拋物線C2上一點P(異于原點O)作切線l,交橢圓于A,B兩點,Q是OP的中點,求△QAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知如圖,PA、PB、PC互相垂直,且長度相等,E為AB中點,則直線CE與平面PAC所成角的正弦值為$\frac{\sqrt{6}}{6}$.

查看答案和解析>>

同步練習(xí)冊答案