【題目】甲、乙兩人在相同的條件下投籃5輪,每輪甲、乙各投籃10次,投籃命中次數(shù)的情況如圖所示(實線為甲的折線圖,虛線為乙的折線圖),則以下說法錯誤的是( )
A. 甲投籃命中次數(shù)的眾數(shù)比乙的小
B. 甲投籃命中次數(shù)的平均數(shù)比乙的小
C. 甲投籃命中次數(shù)的中位數(shù)比乙的大
D. 甲投籃命中的成績比乙的穩(wěn)定
【答案】B
【解析】
由折線圖得到甲乙投籃5次命中次數(shù)的數(shù)據(jù),再根據(jù)眾數(shù)、中位數(shù)、平均數(shù)和方差,逐項判定,即可得到答案.
由折線圖可知,甲投籃5輪,命中的次數(shù)分別為,
乙投籃5輪,命中的次數(shù)分別為,
則甲投籃命中次數(shù)的眾數(shù)為,乙投籃命中的眾數(shù)為7,所以A正確;
甲投籃命中次數(shù)的平均數(shù)為,乙投籃命中的眾數(shù)為,所以B不正確;
甲投籃命中次數(shù)的中位數(shù)為,乙投籃命中的眾數(shù)為,所以C正確;
甲投籃命中次數(shù)的數(shù)據(jù)集中在平均數(shù)的左右,方差較小,乙投籃命中的次數(shù)數(shù)據(jù)比較分散,方差較大,所以甲的成績更穩(wěn)定一些,所以D正確,
故選B.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[2018·贛中聯(lián)考]李冶(1192-1279),真實欒城(今屬河北石家莊市)人,金元時期的數(shù)學(xué)家、詩人,晚年在封龍山隱居講學(xué),數(shù)學(xué)著作多部,其中《益古演段》主要研究平面圖形問題:求圓的直徑、正方形的邊長等.其中一問:現(xiàn)有正方形方田一塊,內(nèi)部有一個圓形水池,其中水池的邊緣與方田四邊之間的面積為13.75畝,若方田的四邊到水池的最近距離均為二十步,則圓池直徑和方田的邊長分別是(注:240平方步為1畝,圓周率按3近似計算)( )
A. 10步,50步 B. 20步,60步 C. 30步,70步 D. 40步,80步
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),在以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,圓的方程為.
(1)求的普通方程和的直角坐標(biāo)方程;
(2)當(dāng)時,與相交于,兩點(diǎn),求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】矩形中,,為中點(diǎn),將沿所在直線翻折,在翻折過程中,給出下列結(jié)論:
①存在某個位置,; ②存在某個位置,;
③存在某個位置,; ④存在某個位置,.
其中正確的是( )
A. ①② B. ③④ C. ①③ D. ②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某廠家擬舉行雙十一促銷活動,經(jīng)調(diào)查測算,該產(chǎn)品的年銷售量(即該廠的年產(chǎn)量)m萬件與年促銷費(fèi)用x萬元()滿足.已知年生產(chǎn)該產(chǎn)品的固定投入為8萬元,每生產(chǎn)1萬件該產(chǎn)品需要再投入16萬元,廠家將每件產(chǎn)品的銷售價格定為每件產(chǎn)品年平均成本的1.5倍(產(chǎn)品成本包括固定投入和再投入兩部分資金).
(1)將該產(chǎn)品的年利潤y萬元表示為年促銷費(fèi)用x萬元的函數(shù);
(2)該廠家年促銷費(fèi)用投入多少萬元時,廠家的利潤最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為.
(1)寫出直線的普通方程及曲線的直角坐標(biāo)方程;
(2)已知點(diǎn),點(diǎn),直線過點(diǎn)且與曲線相交于,兩點(diǎn),設(shè)線段的中點(diǎn)為,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com