分析 利用向量共線定理即可得出.
解答 解:$\overrightarrow{a}-\overrightarrow$=(1-x,3),
∵$\overrightarrow{a}$∥($\overrightarrow{a}$-$\overrightarrow$),∴2(1-x)-3=0,解得x=-$\frac{1}{2}$.
則$\overrightarrow{a}$•$\overrightarrow$=-$\frac{1}{2}$-2=-$\frac{5}{2}$.
故答案為:-$\frac{5}{2}$.
點評 本題考查了向量共線定理,考查了推理能力與計算能力,屬于基礎(chǔ)題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 5035 | B. | 5039 | C. | 5043 | D. | 5047 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 32 | B. | 4 | C. | 8 | D. | 16 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{4}{3}$ | B. | $\frac{2}{3}$ | C. | $-\frac{4}{3}$ | D. | -3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
x | 0 | 1 | 2 | 3 |
y | 1 | 3 | 5 | 7 |
A. | ($\frac{3}{2}$,4) | B. | ($\frac{3}{2}$,2) | C. | (1,4) | D. | (2,2) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 3 | B. | $\frac{\sqrt{3}}{2}$ | C. | $\frac{3}{2}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{3}{2}$•($\frac{1}{2}$)n-1 | B. | $\frac{3}{2}•{({-\frac{1}{2}})^{n-2}}$ | C. | $\frac{3}{2}$•(-$\frac{1}{2}$)n-2 | D. | $\frac{3}{2}$•(-2)n-1或$\frac{3}{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com