A. | 0 | B. | -2 | C. | 2 | D. | $2{log_2}\frac{1}{3}$ |
分析 由題意分別求出f($\frac{1}{2}$)和f(-$\frac{1}{2}$),由此能求出$f({\frac{1}{2}})+f({-\frac{1}{2}})$的值.
解答 解:∵函數(shù)$f(x)=1-x+{log_2}\frac{1-x}{1+x}$,
∴f($\frac{1}{2}$)=1-$\frac{1}{2}+lo{g}_{2}\frac{1-\frac{1}{2}}{1+\frac{1}{2}}$=$\frac{1}{2}+lo{g}_{2}\frac{1}{3}$,
f(-$\frac{1}{2}$)=1+$\frac{1}{2}+lo{g}_{2}\frac{1+\frac{1}{2}}{1-\frac{1}{2}}$=$\frac{3}{2}+lo{g}_{2}3$,
∴$f({\frac{1}{2}})+f({-\frac{1}{2}})$=$\frac{1}{2}+lo{g}_{2}\frac{1}{3}+\frac{3}{2}+lo{g}_{2}3$=2.
故選:C.
點評 本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意函數(shù)性質(zhì)的合理運用.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | 4 | C. | 5 | D. | 7 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{3}$ | B. | $\frac{2π}{3}$ | C. | 2π | D. | 4π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ($\frac{1}{3}$,$\frac{2}{3}$) | B. | [$\frac{1}{3}$,$\frac{2}{3}$) | C. | ($\frac{1}{2}$,$\frac{2}{3}$) | D. | [$\frac{1}{2}$,$\frac{2}{3}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{15}{16}$ | B. | $\frac{15}{12}$ | C. | $\frac{13}{8}$ | D. | $\frac{13}{4}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com