20.設(shè)函數(shù)f(x)=sin(2x+$\frac{π}{4}$)(x∈[0,$\frac{9π}{8}$]),若方程f(x)=a恰好有三個根,分別為x1,x2,x3(x1<x2<x3),則x1+x2+x3的取值范圍是(  )
A.[$\frac{9π}{8}$,$\frac{5π}{4}$)B.[$\frac{5π}{4}$,$\frac{11π}{8}$)C.[$\frac{3π}{2}$,$\frac{13π}{8}$)D.[$\frac{7π}{4}$,$\frac{15π}{8}$)

分析 由x∈[0,$\frac{9π}{8}$]求出2x+$\frac{π}{4}$的范圍,由正弦函數(shù)的圖象畫出函數(shù)的大致圖象,由函數(shù)的圖象,以及正弦圖象的對稱軸求出x1+x2的值,判斷出x3的范圍,即可求出x1+x2+x3的取值范圍.

解答 解:由題意x∈[0,$\frac{9π}{8}$],則2x+$\frac{π}{4}$∈[$\frac{π}{4}$,$\frac{5π}{2}$],
畫出函數(shù)的大致圖象:
由圖得,當(dāng)$\frac{\sqrt{2}}{2}≤a<1$ 時,方程f(x)=a恰好有三個根,
由2x+$\frac{π}{4}$=$\frac{π}{2}$得x=$\frac{π}{8}$,由2x+$\frac{π}{4}$=$\frac{3π}{2}$得x=$\frac{5π}{8}$,
由圖知,點(diǎn)(x1,0)與點(diǎn)(x2,0)關(guān)于直線$x=\frac{π}{8}$對稱,
點(diǎn)(x2,0)與點(diǎn)(x3,0)關(guān)于直線$x=\frac{5π}{8}$對稱,
∴x1+x2=$\frac{π}{4}$,π≤x3<$\frac{9π}{8}$,則$\frac{5π}{4}≤$ x1+x2+x3<$\frac{11π}{8}$,
即x1+x2+x3的取值范圍是$[\frac{5π}{4},\frac{11π}{8})$,
故選B.

點(diǎn)評 本題考查正弦函數(shù)的圖象,以及正弦函數(shù)圖象對稱性的應(yīng)用,考查整體思想,數(shù)形結(jié)合思想.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)α,β是兩個不同的平面,l是一條直線,以下命題正確的是(  )
A.若l⊥α,α⊥β,則 l?βB.若l∥α,α∥β,則 l?β
C.若l⊥α,α∥β,則 l⊥βD.若l∥α,α⊥β,則l⊥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=lnx,g(x)=f(x)+ax2-3x,函數(shù)g(x)的圖象在點(diǎn)(1,g(1))處的切線平行于x軸.
(Ⅰ)求a的值;
(Ⅱ)求函數(shù)g(x)的極小值;
(III)設(shè)斜率為k的直線與函數(shù)f(x)的圖象交于兩A(x1,y1),B(x2,y2),(x1<x2),證明:$\frac{1}{{x}_{2}}$<k<$\frac{1}{{x}_{1}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.在高中學(xué)習(xí)過程中,同學(xué)們經(jīng)常這樣說“如果物理成績好,那么學(xué)習(xí)數(shù)學(xué)就沒什么問題”某班針對“高中生物理對數(shù)學(xué)學(xué)習(xí)的影響”進(jìn)行研究,得到了學(xué)生的物理成績與數(shù)學(xué)成績具有線性相關(guān)關(guān)系的結(jié)論,現(xiàn)從該班隨機(jī)抽取5名學(xué)生在一次考試中的物理和數(shù)學(xué)成績,如表:
編號
成績
12345
物理(x)9085746863
數(shù)學(xué)(y)1301251109590
(1)求數(shù)學(xué)y成績關(guān)于物理成績x的線性回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$(b精確到0.1),若某位學(xué)生的物理成績?yōu)?0分時,預(yù)測他的物理成績.
(2)要從抽取的這五位學(xué)生中隨機(jī)選出三位參加一項(xiàng)知識競賽,以X表示選中的學(xué)生的數(shù)學(xué)成績高于100分的人數(shù),求隨機(jī)變量X的分布列及數(shù)學(xué)期望.
(參考公式:b=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{xy}}{\sum_{i=1}^{n}{{x}_{i}}^{2}n\stackrel{-2}{x}}$,$\stackrel{∧}{a}$=$\overline{y}$b$\overline{x}$,)參考數(shù)據(jù):902+852+742+682+632=29394
90×130+85×125+74×110+68×95+63×90=42595.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.平面內(nèi)到定點(diǎn)F(0,1)和定直線l:y=-1的距離之和等于4的動點(diǎn)的軌跡為曲線C.關(guān)于曲線C的幾何性質(zhì),給出下列三個結(jié)論:
①曲線C關(guān)于y軸對稱;
②若點(diǎn)P(x,y)在曲線C上,則|y|≤2;
③若點(diǎn)P在曲線C上,則1≤|PF|≤4.
其中,所有正確結(jié)論的序號是①②③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知集合A={x|x(x-2)=0},B={x∈Z|x2≤1},則A∪B等于(  )
A.{-2,-1,0,1}B.{-1,0,1,2}C.[-2,2]D.{0,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在數(shù)列{an}中,a1=$\frac{1}{2}$,{an}的前n項(xiàng)和Sn滿足Sn+1-Sn=($\frac{1}{2}$)n+1(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式an,以及前n項(xiàng)和Sn;
(2)若S1+S2,S1+S3,m(S2+S3)成等差數(shù)列,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.不等式$\sqrt{x+3}<2$的解是[-3,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若冪函數(shù)f(x)=xm-1在(0,+∞)上是增函數(shù),則( 。
A.m>1B.m<1C.m=1D.不能確定

查看答案和解析>>

同步練習(xí)冊答案