17.已知α,β∈(0,π),且$cos(2α+β)-2cos(α+β)cosα=\frac{3}{5}$,則sin2β=$-\frac{24}{25}$.

分析 由已知利用拆角方法及兩角和與差的余弦求得cosβ,再由同角三角函數(shù)的基本關(guān)系式結(jié)合角的范圍求得sinβ,代入二倍角公式求得sin2β.

解答 解:$cos(2α+β)-2cos(α+β)cosα=\frac{3}{5}$,
得cos[(α+β)+α]-2cos(α+β)cosα=$\frac{3}{5}$,
即cos(α+β)cosα-sin(α+β)sinα-2cos(α+β)cosα=$\frac{3}{5}$,
∴-[cos(α+β)cosα+sin(α+β)sinα]=$\frac{3}{5}$,則-cosβ=$\frac{3}{5}$,cosβ=-$\frac{3}{5}$.
又β∈(0,π),∴sinβ=$\frac{4}{5}$,
則sin2β=2sinβcosβ=2×$\frac{4}{5}×(-\frac{3}{5})$=$-\frac{24}{25}$.
故答案為:$-\frac{24}{25}$.

點評 本題考查三角函數(shù)的化簡求值,考查兩角和與差的余弦及倍角公式的應(yīng)用,是基礎(chǔ)的計算題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在高中學(xué)習(xí)過程中,同學(xué)們經(jīng)常這樣說:“如果物理成績好,那么學(xué)習(xí)數(shù)學(xué)就沒什么問題.”某班針對“高中生物理學(xué)習(xí)對數(shù)學(xué)學(xué)習(xí)的影響”進行研究,得到了學(xué)生的物理成績與數(shù)學(xué)成績具有線性相關(guān)關(guān)系的結(jié)論,現(xiàn)從該班隨機抽取5名學(xué)生在一次考試中的物理和數(shù)學(xué)成績,如表:
成績/編號12345
物理(x)9085746863
數(shù)學(xué)(y)1301251109590
(參考公式:$\widehat$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\widehat{y}$-$\widehat$$\overline{x}$)
參考數(shù)據(jù):902+852+742+682+632=29394,90×130+85×125+74×110+68×95+63×90=42595.
(1)求數(shù)學(xué)成績y關(guān)于物理成績x的線性回歸方程$\widehat{y}$=$\widehat$x+$\widehat{a}$($\widehat$精確到0.1),若某位學(xué)生的物理成績?yōu)?0分,預(yù)測他的數(shù)學(xué)成績;
(2)要從抽取的這五位學(xué)生中隨機選出三位參加一項知識競賽,以X表示選中的學(xué)生的數(shù)學(xué)成績高于100分的人數(shù),求隨機變量X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.下列函數(shù)中,在其定義域內(nèi),既是奇函數(shù)又是減函數(shù)的是( 。
A.f(x)=x3B.f(x)=$\sqrt{-x}$C.f(x)=2-x-2xD.f(x)=-lg|x|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知實數(shù)x,y滿足$\left\{\begin{array}{l}y≤x\\ x+y≤1\\ y≥-1\end{array}\right.$,則目標(biāo)函數(shù)z=2x-y的最大值為( 。
A.-3B.$\frac{1}{2}$C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.函數(shù)y=-arccos2x的反函數(shù)為y=$\frac{1}{2}$cosx,(0,π).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.點P從點(-1,0)出發(fā),沿單位圓x2+y2=1順時針方向運動$\frac{π}{3}$弧長到達Q點,則Q點的坐標(biāo)為(-$\frac{1}{2}$,$\frac{\sqrt{3}}{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)過拋物線y2=4x的焦點F的直線l交拋物線于點A,B,若以AB為直徑的圓過點P(-1,2),且與x軸交于M(m,0),N(n,0)兩點,則mn=( 。
A.3B.2C.-3D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.正方體ABCD-A1B1C1D1中與AD1垂直的平面是(  )
A.平面DD1C1CB.平面A1DBC.平面A1B1C1D1D.平面A1DB1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.平面上兩點F1,F(xiàn)2滿足|F1F2|=4,設(shè)d為實數(shù),令Γ表示平面上滿足||PF1|+|PF2||=d的所有P點組成的圖形,又令C為平面上以F1為圓心、1為半徑的圓.則下列結(jié)論中,其中正確的有②③⑤(寫出所有正確結(jié)論的編號).
①當(dāng)d=4時,Γ為直線;
②當(dāng)d=5時,Γ為橢圓;
③當(dāng)d=6時,Γ與圓C交于三點;
④當(dāng)d>6時,Γ與圓C交于兩點;
⑤當(dāng)d<4時,Γ不存在.

查看答案和解析>>

同步練習(xí)冊答案