18.閱讀下面材料,嘗試類比探究函數(shù)y=x2-$\frac{1}{{x}^{2}}$的圖象,寫出圖象特征,并根據(jù)你得到的結論,嘗試猜測作出函數(shù)對應的圖象.
閱讀材料:
我國著名數(shù)學家華羅庚先生曾說:數(shù)缺形時少直觀,形少數(shù)時難入微,數(shù)形結合百般好,隔裂分家萬事休.
在數(shù)學的學習和研究中,常用函數(shù)的圖象來研究函數(shù)的性質,也常用函數(shù)的解析式來琢磨函數(shù)的圖象的特征.我們來看一個應用函數(shù)的特征研究對應圖象形狀的例子.
對于函數(shù)y=$\frac{1}{x}$,我們可以通過表達式來研究它的圖象和性質,如:
(1)在函數(shù)y=$\frac{1}{x}$中,由x≠0,可以推測出,對應的圖象不經(jīng)過y軸,即圖象與y軸不相交;由y≠0,可以推測出,對應的圖象不經(jīng)過x軸,即圖象與x軸不相交.
(2)在函數(shù)y=$\frac{1}{x}$中,當x>0時y>0;當x<0時y<0,可以推測出,對應的圖象只能在第一、三象限;
(3)在函數(shù)y=$\frac{1}{x}$中,若x∈(0,+∞)則y>0,且當x逐漸增大時y逐漸減小,可以推測出,對應的圖象越向右越靠近x軸;若x∈(-∞,0),則y<0,且當x逐漸減小時y逐漸增大,可以推測出,對應的圖象越向左越靠近x軸;
(4)由函數(shù)y=$\frac{1}{x}$可知f(-x)=-f(x),即y=$\frac{1}{x}$是奇函數(shù),可以推測出,對應的圖象關于原點對稱.
結合以上性質,逐步才想出函數(shù)y=$\frac{1}{x}$對應的圖象,如圖所示,在這樣的研究中,我們既用到了從特殊到一般的思想,由用到了分類討論的思想,既進行了靜態(tài)(特殊點)的研究,又進行了動態(tài)(趨勢性)的思考.讓我們享受數(shù)學研究的過程,傳播研究數(shù)學的成果.

分析 通過函數(shù)的定義域,函數(shù)與x的交點情況,y值的變化趨勢,函數(shù)的奇偶性和函數(shù)的單調性,歸納函數(shù)的性質即可.

解答 解:(1)在y=x2-$\frac{1}{{x}^{2}}$中,x≠0,可以推測出:對應的圖象不經(jīng)過y軸,即與y軸不相交,
(2)令y=0,即x2-$\frac{1}{{x}^{2}}$=0,解得x=±1,可以推測出,對應的圖象與x相交,交點坐標為(1,0)和(-1,0),
(3)在y=x2-$\frac{1}{{x}^{2}}$中,當0<x<1時,$\frac{1}{{x}^{2}}$>1>x2,則y<0,當x>1時,$\frac{1}{{x}^{2}}$<1<x2,則y>0,可以推測出:對應的圖象在區(qū)間(0,1)上圖象在x軸的下方,在區(qū)間(1,+∞)上圖象在x軸的上方,
(4)在y=x2-$\frac{1}{{x}^{2}}$中,若x∈(0,+∞),則
當x逐漸增大時$\frac{1}{{x}^{2}}$逐漸減小,x2-$\frac{1}{{x}^{2}}$,逐漸增大,即y逐漸增大,所以原函數(shù)在(0,+∞)是增函數(shù),
可以推測出:對應的圖象越向右逐漸升高,是單調遞增的趨勢,
(5)由函數(shù)y=x2-$\frac{1}{{x}^{2}}$可知f(-x)=f(x),即函數(shù)為偶函數(shù),可以推測出:對應的圖象關于y軸對稱

點評 本題考查了類比推理的問題,關鍵是掌握函數(shù)的性質,以及題目所告訴的例子,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

8.已知各項均不相等的等差數(shù)列{an}的前五項和S5=20,且a1,a3,a7成等比數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)若bn=$\frac{1}{{a}_{n}{a}_{n+1}}$,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.已知集合A={0,1,log3(x2+2),x2-3x},若-2∈A,則x=2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.如圖,矩形草坪AMPN中,點C在對角線MN上.CD垂直于AN于點D,CB垂直于AM于點B,|CD|=|AB|=3米,|AD|=|BC|=2米,設|DN|=x米,|BM|=y米.求這塊矩形草坪AMPN面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.設A,B是非空的集合,如果按某一個確定的對應關系f,使對于集合A中的任意一個元素x,在集合中B都有唯一確定的元素y與之對應,那么就稱對應f:A→B為從集合A到集合B的一個映射,設f:x→$\sqrt{x}$是從集合A到集合B的一個映射.①若A={0,1,2},則A∩B={0,1};②若B={1,2},則A∩B={1}或∅.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.設平面向量$\overrightarrow{a}$=(5,3),$\overrightarrow$=(1,-2),則$\overrightarrow{a}$-2$\overrightarrow$等于( 。
A.(3,7)B.(7,7)C.(7,1)D.(3,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.已知向量$\overrightarrow{a}$=(-1,2),$\overrightarrow$=(2,-3),若向量λ$\overrightarrow{a}$+$\overrightarrow$與向量$\overrightarrow{c}$=(-4,7)共線,則λ的值為-2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.若點P(cosθ,sinθ)在直線2x+y=0上,則cos2θ+$\frac{1}{2}$sin2θ=(  )
A.-1B.-$\frac{1}{2}$C.$\frac{7}{5}$D.$\frac{7}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.設D是線段BC的中點,且$\overrightarrow{AB}$+$\overrightarrow{AC}$=4$\overrightarrow{AE}$,則( 。
A.$\overrightarrow{AD}=2\overrightarrow{AE}$B.$\overrightarrow{AD}=4\overrightarrow{AE}$C.$\overrightarrow{AD}=2\overrightarrow{EA}$D.$\overrightarrow{AD}=4\overrightarrow{EA}$

查看答案和解析>>

同步練習冊答案