18.若通過推理所得到的結(jié)論一定是正確的,則這樣的推理必定是( 。
A.歸納推理B.類比推理C.合情推理D.演繹推理

分析 根據(jù)歸納推理、類比推理、合情推理的定義和相互關(guān)系,演繹推理的定義和一般模式,從而得出結(jié)論.

解答 解:由于歸納推理是由幾個特殊事例得出的一般性的結(jié)論,故結(jié)論不一定正確,故排除A;
類比推理是由一類事物的特征來推測另一類失誤也有此類似的特征,故得到的結(jié)論也不一定正確,
故排除B;
由合情推理包括歸納推理和類比推理,故排除C;
演繹推理一般模式是“三段論”形式,即大前提小前提和結(jié)論,
在大前提、小前提和推理形式都正確的情況下,得到的結(jié)論一定正確,
故選:D.

點評 本題主要考查幾種推理間的定義以及相互間的關(guān)系,演繹推理是由一般性的結(jié)論推出特殊性命題的一種推理模式,演繹推理的前提與結(jié)論之間有一種蘊含關(guān)系,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.箱子中有五張分別寫著數(shù)字0,1,2,3,4的卡片,現(xiàn)從中隨機抽取2張組成一個兩位數(shù),這個兩位數(shù)的個位數(shù)字與十位數(shù)字之和為X.
(1)可以組成多少個不同的兩位數(shù)?
(2)求X能被3整除的概率;
(3)求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知圓C的圓心在坐標(biāo)原點O,且與直線${l_1}:x-y-2\sqrt{2}=0$相切.
(1)若與直線l1垂直的直線與圓C交于不同的兩點P,Q,且以PQ為直徑的圓過原點,求直線的縱截距;
(2)過點G(1,3)作圓C的切線,求切線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.復(fù)數(shù)z的共軛復(fù)數(shù)為$\overline z$,那么條件p:$z=\overline z$是條件q:z為實數(shù)的( 。
A.充分而不必要的條件B.必要而不充分的條件
C.充要條件D.既不充分也不必要的條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知數(shù)列{an}的各項均為正數(shù),Sn為其前n項和,對于任意的n∈N*,滿足關(guān)系式$2{S_n}=\frac{9}{4}{a_n}-\frac{9}{4}$.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)數(shù)列{bn}的通項公式是${b_n}=\frac{1}{{({{log}_3}{a_n}-1)({{log}_3}{a_n}+1)}}$,前n項和為Tn,求證:對于任意的正整數(shù)n,總有${T_n}<\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=x-alnx(a∈R)
(Ⅰ)當(dāng)a=2時,求曲線y=f(x)在點A(1,f(1))處的切線方程;
(Ⅱ)討論函數(shù)f(x)單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.下列各數(shù)中最小的是(  )
A.111111(2)B.222(5)C.1000(4)D.65

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.設(shè)i為虛數(shù)單位,若復(fù)數(shù)z=(m2+2m-8)+(m-2)i是純虛數(shù),則實數(shù)m=-4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.中、美、俄等21國領(lǐng)導(dǎo)人合影留念,他們站成兩排,前排11人,后排10人,中國領(lǐng)導(dǎo)人站在第一排正中間位置,美俄兩國領(lǐng)導(dǎo)人站在與中國領(lǐng)導(dǎo)人相鄰的兩側(cè),如果對其他領(lǐng)導(dǎo)人所站的位置不做要求,那么不同的站法共有( 。
A.A1818B.A2020C.A32A183A1010D.A22A1818

查看答案和解析>>

同步練習(xí)冊答案