分析 由約束條件作出可行域,化目標(biāo)函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,聯(lián)立方程組求得最優(yōu)解的坐標(biāo),代入目標(biāo)函數(shù)得答案.
解答 解:由約束條件$\left\{\begin{array}{l}\frac{1}{2}x-y≤0\\ x-7≤0\\ 2x-y-4≥0\end{array}\right.$作出可行域如圖,
聯(lián)立$\left\{\begin{array}{l}{x=7}\\{2x-y-4=0}\end{array}\right.$,解得A(7,10),
化目標(biāo)函數(shù)z=2x-3y為$y=\frac{2}{3}x-\frac{z}{3}$,由圖可知,當(dāng)直線$y=\frac{2}{3}x-\frac{z}{3}$過A時(shí),直線在y軸上的截距最大,z有最小值為-16.
故答案為:-16.
點(diǎn)評 本題考查簡單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法,是中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {0,2} | B. | {-1,2} | C. | $\{0,\frac{1}{2}\}$ | D. | $\{\frac{1}{2},2\}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{9}{2}$ | B. | 9 | C. | 6 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A | B | C | |
甲 | 2 | 4 | 2 |
乙 | 4 | 4 | 8 |
A. | 17萬元 | B. | 18萬元 | C. | 19萬元 | D. | 20萬元 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {b|2016≤b≤2018} | B. | {2016,2018} | C. | {2018} | D. | {2017} |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com