7.為了調(diào)查胃病是否與生活規(guī)律有關,在某地對540名40歲以上的人進行了調(diào)查,結(jié)果是:患胃病者生活不規(guī)律的共60人,患胃病者生活規(guī)律的共20人,未患胃病者生活不規(guī)律的共260人,未患胃病者生活規(guī)律的共200人.
(1)根據(jù)以上數(shù)據(jù)列出2×2列聯(lián)表;
(2)在犯錯誤的概率不超過0.01的前提下認為40歲以上的人患胃病與否和生活規(guī)律有關系嗎?為什么?
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,n=a+b+c+d
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828

分析 (1)由已知作出2×2列聯(lián)表即可;
(2)由列聯(lián)表,結(jié)合計算公式,求得K2=$\frac{540×(20×260-200×60)^{2}}{80×460×220×320}$≈9.638,由此判斷出兩個量之間的關系.

解答 解:(1)由已知可列2×2列聯(lián)表得:

患胃病未患胃病合計
生活規(guī)律20200220
生活不規(guī)律60260320
合計80460540
(2)由計算公式得K2的觀測值為:K2=$\frac{540×(20×260-200×60)^{2}}{80×460×220×320}$≈9.638,
∵9.638>6.635
∴在犯錯識的概率不超過0.010的前提下,我們認為40歲以上的人患胃病與否和生活規(guī)律有關.

點評 本題考查獨立性檢驗的應用,解題的關鍵是給出列聯(lián)表,再熟練運用公式求出卡方的值,根據(jù)所給的表格判斷出有關的可能性.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

17.已知函數(shù)f(x)的導函數(shù)為f′(x),且滿足f(x)=3x2+2xf′(2),則f′(5)=6.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.曲線3x2-y+6=0在$x=-\frac{1}{6}$處的切線的傾斜角是( 。
A.-135°B.-45°C.45°D.135°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知等差數(shù)列{an}的前n項和為Sn,若S13=-26,a9=4,求:
(1)數(shù)列{an}的通項公式;
(2)S8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.在空間直角坐標系中,A(2,3,5)B(3,1,7),則點A、B之間的距離為3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.下列說法正確的是( 。
A.閉區(qū)間上函數(shù)極大值一定比極小值大
B.閉區(qū)間上函數(shù)最大值一定是極大值
C.若|p|<$\sqrt{6}$,則f(x)=x3+px2+2x+1無極值
D.函數(shù)f(x)在區(qū)間(a,b)上一定存在最值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.極坐標方程ρ(cos2θ-sin2θ)=0表示的曲線為( 。
A.極軸B.一條直線C.雙曲線D.兩條相交直線

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.在△ABC中,BC邊上的高所在直線的方程為x-2y+1=0,∠A的平分線所在直線方程為y=0,若點B的坐標為(1,2).
(1)求點A和點C的坐標;
(2)求AC邊上的高所在的直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知雙曲線Γ1:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點分別為F1,F(xiàn)2,橢圓Γ2:$\frac{{x}^{2}}{8}$+$\frac{{y}^{2}}{6}$=1的離心率為e,直線MN過F2與雙曲線交于M,N兩點,若cos∠F1MN=cos∠F1F2M,$\frac{|{F}_{1}M|}{|{F}_{1}N|}$=e,則雙曲線Γ1的兩條漸近線的傾斜角分別為( 。
A.30°或150°B.45°或135°C.60°或120°D.15°或165°

查看答案和解析>>

同步練習冊答案