【題目】已知,直線(xiàn)l,設(shè)圓C的半徑為1,圓心在l上.

若圓心C也在直線(xiàn)上,過(guò)A作圓C的切線(xiàn),求切線(xiàn)方程;

若圓C上存在點(diǎn)M,使,求圓心C的橫坐標(biāo)a取值范圍.

【答案】(1);(2).

【解析】

根據(jù)圓心在直線(xiàn)l上也在直線(xiàn)上,求得圓心坐標(biāo),可得過(guò)A的圓C的切線(xiàn)方程.

設(shè)圓C的方程為,再設(shè),根據(jù),求得圓D,根據(jù)題意,圓C和圓D有交點(diǎn),可得,即,由此求得a的范圍.

根據(jù)圓心在直線(xiàn)l上,若圓心C也在直線(xiàn)上,

則由,求得,可得圓心坐標(biāo)為

設(shè)過(guò)的圓C的切線(xiàn),斜率顯然存在,設(shè)方程為,即

根據(jù)圓心到直線(xiàn)的距離等于半徑1,可得,求得

切線(xiàn)方程為

根據(jù)圓心在直線(xiàn)l上,可設(shè)圓的方程為

若圓C上存在點(diǎn)M,使,設(shè),

,化簡(jiǎn)可得,故點(diǎn)M在以為圓心、半徑等于2的圓上.

根據(jù)題意,點(diǎn)M也在圓C上,故圓C和圓D有交點(diǎn),,即

求得,且,解得

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中,,則____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知f(x)=3sinx﹣πx,命題p:x∈(0, ),f(x)<0,則(
A.p是假命題,¬p:?x∈(0, ),f(x)≥0
B.p是假命題,¬p:?x0∈(0, ),f(x0)≥0
C.p是真命題,¬p:?x∈(0, ),f(x)>0
D.p是真命題,¬p:?x0∈(0, ),f(x0)≥0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知0<x<1,0<y<1, 求證 + + + ≥2 ,并求使等號(hào)成立的條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知平面五邊形是軸對(duì)稱(chēng)圖形(如圖1),BC為對(duì)稱(chēng)軸,ADCD,AD=AB=1,,將此五邊形沿BC折疊,使平面ABCD平面BCEF,得到如圖2所示的空間圖形,對(duì)此空間圖形解答下列問(wèn)題.

1)證明:AF平面DEC

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓經(jīng)過(guò)兩點(diǎn),且圓心在直線(xiàn)l上.

求圓的方程;

求過(guò)點(diǎn)且與圓相切的直線(xiàn)方程;

設(shè)圓x軸相交于AB兩點(diǎn),點(diǎn)P為圓上不同于A、B的任意一點(diǎn),直線(xiàn)PA、PBy軸于MN點(diǎn)當(dāng)點(diǎn)P變化時(shí),以MN為直徑的圓是否經(jīng)過(guò)圓內(nèi)一定點(diǎn)?請(qǐng)證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】南航集團(tuán)與波音公司2018年2月在廣州簽署協(xié)議,雙方合作的客改貨項(xiàng)目落戶(hù)廣州空港經(jīng)濟(jì)區(qū).根據(jù)協(xié)議,雙方將在維修技術(shù)轉(zhuǎn)讓、支持項(xiàng)目、管理培訓(xùn)等方面開(kāi)展戰(zhàn)略合作.現(xiàn)組織者對(duì)招募的100名服務(wù)志愿者培訓(xùn)后,組織一次知識(shí)競(jìng)賽,將所得成績(jī)制成如下頻率分布直方圖(假定每個(gè)分?jǐn)?shù)段內(nèi)的成績(jī)均勻分布),組織者計(jì)劃對(duì)成績(jī)前20名的參賽者進(jìn)行獎(jiǎng)勵(lì).

(1)試求受獎(jiǎng)勵(lì)的分?jǐn)?shù)線(xiàn);

(2)從受獎(jiǎng)勵(lì)的20人中利用分層抽樣抽取5人,再?gòu)某槿〉?人中抽取2人在主會(huì)場(chǎng)服務(wù),試求2人成績(jī)都在90分以上(含90分)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知平行四邊形ABCD中.∠BAD=120°,AB=1,AD=2,點(diǎn)P是線(xiàn)段BC上的一個(gè)動(dòng)點(diǎn),則 的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知為函數(shù)的導(dǎo)函數(shù), .

(1)求的單調(diào)區(qū)間;

(2)當(dāng)時(shí), 恒成立,求的取值范圍 .

查看答案和解析>>

同步練習(xí)冊(cè)答案