分析 (Ⅰ)取AB中點F,連接EF、DF,利用三角形中位線定理、等邊三角形的性質可得:EF∥PB,DF⊥AB.進而得到DF∥BC.于是平面DEF∥平面PBC,即可證明DE∥平面PBC.
(Ⅱ)由平面PAB⊥平面ABCD,BC⊥AB,可得BC⊥平面PAB,平面PAB⊥平面PBC.在△PAB中,過E作EG⊥PB交BP延長線于G點,則EG的長為點E到平面PBC的距離,設點A到PB的距離為h,利用S△PAB=$\frac{1}{2}$PF•AB=$\frac{1}{2}$h•PB,即可得出.
解答 (Ⅰ)證明:取AB中點F,連接EF、DF,
∴EF∥PB,DF⊥AB.
∵∠CBD=∠FDB=30°,
∴∠ABC=90°,即CB⊥AB,
∴DF∥BC,
∵EF、DF?平面DEF,PB、BC?平面PBC,
∴平面DEF∥平面PBC,
∵DE?平面DEF,
∴DE∥平面PBC.
(Ⅱ)解:∵平面PAB⊥平面ABCD,BC⊥AB,
∴BC⊥平面PAB,
∵BC?平面PBC,
∴平面PAB⊥平面PBC.
∴在△PAB中,過E作EG⊥PB交BP的延長線于G點,
則EG的長為點E到平面PBC的距離,
設點A到PB的距離為h,
則$\frac{1}{2}×PB×h=\frac{1}{2}×AB×PF⇒\frac{1}{2}×2×h=\frac{1}{2}×2\sqrt{3}×1$,即$h=\sqrt{3}$,
∴$EG=\frac{1}{2}h=\frac{{\sqrt{3}}}{2}$,即點E到平面PBC的距離為$\frac{{\sqrt{3}}}{2}$.
點評 本題考查了空間位置關系、線面面面判平行與垂直的判定與性質定理、三角形中位線定理、平行線的判定方法、,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com