分析 以原點為圓心,雙曲線的實半軸長為半徑長的圓的方程為x2+y2=4,雙曲線的兩條漸近線方程為y=±$\frac{2}$x,利用四邊形ABCD的面積為2b,求出A的坐標(biāo),代入圓的方程,即可得出結(jié)論.
解答 解:以原點為圓心,雙曲線的實半軸長為半徑長的圓的方程為x2+y2=4,
雙曲線的兩條漸近線方程為y=±$\frac{2}$x,
設(shè)A(x,$\frac{2}$x),∵四邊形ABCD即矩形ABCD的面積為2b,
∴2x•bx=2b,
∴x=±1,
將A(1,$\frac{2}$)代入x2+y2=4,可得1+$\frac{^{2}}{4}$=4,∴b2=12,
∴雙曲線的方程為$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1,
故答案為:$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1.
點評 本題考查雙曲線的方程與性質(zhì),注意運用方程思想和代入法,考查學(xué)生分析解決問題的能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | m≤-2 | B. | -2≤m≤0 | C. | 0≤m≤2 | D. | m≥2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,-2) | B. | (-∞,-2] | C. | (-2,+∞) | D. | [-2,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $-\frac{{\sqrt{3}}}{2}$ | B. | $\frac{{\sqrt{3}}}{2}$ | C. | $-\sqrt{3}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (2,+∞) | B. | (4,+∞) | C. | (0,4) | D. | (-∞,0)∪(4,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com