9.y=log0.5[cos($\frac{x}{3}$+$\frac{π}{4}$)]的單調(diào)遞增區(qū)間為[6kπ-$\frac{3π}{4}$,6kπ+$\frac{3π}{4}$)(k∈Z).

分析 令t=cos($\frac{x}{3}$+$\frac{π}{4}$),則y=log0.5t,本題即求當(dāng)t>0時(shí),函數(shù)t的減區(qū)間,再利用余弦函數(shù)的性質(zhì),得出結(jié)論.

解答 解:令t=cos($\frac{x}{3}$+$\frac{π}{4}$),則y=log0.5t,本題即求當(dāng)t>0時(shí),函數(shù)t的減區(qū)間,
令2kπ≤$\frac{x}{3}$+$\frac{π}{4}$<2kπ+$\frac{π}{2}$,求得6kπ-$\frac{3π}{4}$≤x<6kπ+$\frac{3π}{4}$,故函數(shù)y的增區(qū)間為[6kπ-$\frac{3π}{4}$,6kπ+$\frac{3π}{4}$),(k∈Z),
故答案為:[6kπ-$\frac{3π}{4}$,6kπ+$\frac{3π}{4}$)(k∈Z).

點(diǎn)評(píng) 本題主要考查復(fù)合函數(shù)的單調(diào)性,余弦函數(shù)、對(duì)數(shù)函數(shù)的性質(zhì),屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.圓x2+y2+2x+4y-3=0上到直線x+y+1=0的距離為$\sqrt{2}$的點(diǎn)有( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.在對(duì)人們的休閑方式的一次調(diào)查中,共調(diào)查了124人,其中女性70人,男性54人.女性中有43人主要的休閑方式是看電視,另外27人主要的休閑方式是運(yùn)動(dòng);男性中有21人主要的休閑方式是看電視,另外33人主要的休閑方式是運(yùn)動(dòng).
(1)根據(jù)以上數(shù)據(jù)建立一個(gè)2×2的列聯(lián)表;
(2)是否有97.5%的把握認(rèn)為性別與休閑方式有關(guān)系?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.某市的出租車收費(fèi)辦法如下:
不超過(guò)2公里收7元(即起步價(jià)7元),超過(guò)2公里的里程每公里加收2.5元,另外每車次超過(guò)2公里收燃油附加費(fèi)1元(不考慮其他因素).相應(yīng)收費(fèi)系統(tǒng)的程序框圖如圖所示,則①處應(yīng)填( 。
A.y=7+2.5xB.y=8+2.5xC.y=2+2.5xD.y=3+2.5x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知向量|$\overrightarrow{a}$|=$\sqrt{5}$,$\overrightarrow{a}$•$\overrightarrow$=10,|$\overrightarrow{a}$+$\overrightarrow$|=5$\sqrt{2}$,則|$\overrightarrow$|=( 。
A.$\sqrt{5}$B.$\sqrt{10}$C.5D.25

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知等比數(shù)列{an}的前n項(xiàng)和為Sn,公比q>0,S2=2a2-2,S3=a4-2
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=$\left\{\begin{array}{l}\frac{{{{log}_2}{a_n}}}{{{n^2}({n+2})}}n為奇數(shù)\\ \frac{n}{a_n}\;\;n為偶數(shù)\end{array}$,Tn為{bn}的前n項(xiàng)和,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知以點(diǎn)C為圓心的圓經(jīng)過(guò)點(diǎn)A(0,1)和B(4,3),且圓心在直線3x+y-15=0上.
(Ⅰ)求圓C的方程;
(Ⅱ)設(shè)點(diǎn)P在圓C上,求△PAB的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知集合A={x|x<-1或x≥1},B={x|2a<x≤a+1,a<1},A∪B=A,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.《萊因德紙草書》(Rhind Papyrus)是世界上最古老的數(shù)學(xué)著作之一,書中有這樣一道題:把120個(gè)面包分成5份,使每份的面包數(shù)成等差數(shù)列,且較多的三份之和恰好是較少的兩份之和的7倍,則最多的那份有面包(  )
A.43個(gè)B.45個(gè)C.46個(gè)D.48個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案