已知為f(x)奇函數(shù),在[3,6]上是增函數(shù),[3,6]上的最大值為8,最小值為-1,則2f(-6)+f(-3)等于( 。
A、-15B、-13C、-5D、5
考點:奇偶性與單調(diào)性的綜合
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:f(x)在[3,6]上是增函數(shù),所以f(6)=8,f(3)=-1.而因為f(x)是奇函數(shù),所以2f(-6)+f(-3)=-16+1=-15.
解答: 解:根據(jù)已知條件知,f(6)=8,f(3)=-1,f(-6)=-8,f(-3)=1;
∴2f(-6)+f(-3)=-16+1=-15;
故選A.
點評:考查奇函數(shù)的定義,以及增函數(shù)的定義.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

根據(jù)如下樣本數(shù)據(jù):
x34567
y42.5-1-1-2
得到的線性回歸方程為
?
y
=bx+a
,則( 。
A、a>0,b>0
B、a>0,b<0
C、a<0,b>0
D、a<0,b<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的函數(shù)f(x)滿足f(x+4)=f(x)+2f(2),若函數(shù)y=f(x-1)的圖象關(guān)于直線x=1對稱,且f(3)=2,則f(2015)等于( 。
A、2B、3C、4D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
|lgx|,0<x≤10
-
1
2
x+6,x>10

(1)若a<b<10,且f(a)=f(b),求ab的值;
(2)方程f(x)=k,k為常數(shù),若方程有三解,求k的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,兩塊直角三角板拼在一起,已知∠ABC=45°,∠BCD=60°.若記
AB
=
a
,
AC
=
b
,試用
a
,
b
表示向量
CD
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)點(a,b)是區(qū)域
x+y-4≤0
x>0
y>0
內(nèi)的隨機(jī)點,函數(shù)f(x)=ax2-4bx+1在區(qū)間[1,+∞)是增函數(shù)的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若定義在區(qū)間[-2014,2014]上的函數(shù),f(x)滿足:對于任意的x1,x2∈[-2014,2014],都有f(x1+x2)=f(x1)+f(x2)-2012,且x>0時,有f(x)>2012,若f(x)的最大值、最小值分別為M,N,則M+N的值為( 。
A、4024B、2013
C、2012D、4026

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)變量x,y滿足約束條件
x-y≥-1
x+y≤4
y≥2
,則函數(shù)z=2x+4y的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a>0且a≠1,則函數(shù)f(x)=ax+2+1的圖象過定點
 

查看答案和解析>>

同步練習(xí)冊答案