【題目】在平面直角坐標(biāo)系中,橢圓: 的離心率為,直線被橢圓截得的線段長(zhǎng)為.
(Ⅰ)求橢圓的方程;
(Ⅱ)過(guò)原點(diǎn)的直線與橢圓交于, 兩點(diǎn)(, 不是橢圓的頂點(diǎn)),點(diǎn)在橢圓上,且.直線與軸、軸分別交于兩點(diǎn).設(shè)直線的斜率分別為,證明存在常數(shù)使得,并求出的值.
【答案】(1);(2).
【解析】試題分析:
(Ⅰ)由離心率可得,由對(duì)稱性直線被橢圓截得弦長(zhǎng)為可求得點(diǎn)坐標(biāo)為,代入橢圓方程可求得得橢圓標(biāo)準(zhǔn)方程;
(Ⅱ)直線與橢圓相交,設(shè), ,有,由直線垂直得直線的斜率為.為了簡(jiǎn)便設(shè)直線的方程為,代入橢圓方程消元得的一元二次方程.可得,于是有,而,于是寫出直線方程,求出點(diǎn)坐標(biāo),可得,比較可得.
試題解析:
(Ⅰ)∵,∴,,∴.①
設(shè)直線與橢圓交于,兩點(diǎn),不妨設(shè)點(diǎn)為第一象限內(nèi)的交點(diǎn).∴,
∴代入橢圓方程可得.②
由①②知,,所以橢圓的方程為:.
(Ⅱ)設(shè),則,
直線的斜率為,又,
故直線的斜率為.設(shè)直線的方程為,
由題知,聯(lián)立,得.
∴,,由題意知,
∴,直線的方程為.
令,得,即,可得,∴,即.
因此存在常數(shù)使得結(jié)論成立.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖⑴、⑵、⑶、⑷為四個(gè)幾何體的三視圖,根據(jù)三視圖可以判斷這四個(gè)幾何體依次分別為
A.三棱臺(tái)、三棱柱、圓錐、圓臺(tái)
B.三棱臺(tái)、三棱錐、圓錐、圓臺(tái)
C.三棱柱、正四棱錐、圓錐、圓臺(tái)
D.三棱柱、三棱臺(tái)、圓錐、圓臺(tái)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩位學(xué)生參加數(shù)學(xué)競(jìng)賽培訓(xùn),現(xiàn)分別從他們?cè)谂嘤?xùn)期間參加的若干次預(yù)賽成績(jī)中隨機(jī)抽取8次,記錄如下:
甲 | 82 | 81 | 79 | 78 | 95 | 88 | 93 | 84 |
乙 | 92 | 95 | 80 | 75 | 83 | 80 | 90 | 85 |
(1)用莖葉圖表示這兩組數(shù)據(jù);
(2)現(xiàn)要從中選派一人參加數(shù)學(xué)競(jìng)賽,從統(tǒng)計(jì)學(xué)的角度(在平均數(shù)、方差或標(biāo)準(zhǔn)差中選兩個(gè))考慮,你認(rèn)為選派哪位學(xué)生參加合適?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時(shí),f(x)=x2﹣3x,則函數(shù)g(x)=f(x)﹣x+3的零點(diǎn)的集合為( )
A.{1,3}
B.{﹣3,﹣1,1,3}
C.{2﹣ ,1,3}
D.{﹣2﹣ ,1,3}
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)等差數(shù)列{an}滿足a3=5,a10=﹣9.
(1)求{an}的通項(xiàng)公式;
(2)求{an}的前n項(xiàng)和Sn及使得Sn最大的序號(hào)n的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè){an}是一個(gè)公差不為零的等差數(shù)列,其前n項(xiàng)和為Sn , 已知S9=90,且a1 , a2 , a4成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn= ,求數(shù)列{bn}的前n項(xiàng)和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=sin(ωx+φ)其中ω>0,|φ|< .
(1)若cos cosφ﹣sin sinφ=0.求φ的值;
(2)在(1)的條件下,若函數(shù)f(x)的圖象的相鄰兩條對(duì)稱軸之間的距離等于 ,求函數(shù)f(x)的解析式;并求最小正實(shí)數(shù)m,使得函數(shù)f(x)的圖象象左平移m個(gè)單位所對(duì)應(yīng)的函數(shù)是偶函數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com