【題目】已知直線,橢圓分別為橢圓的左、右焦點.
(1)當直線過右焦點時,求橢圓的標準方程;
(2)設直線與橢圓交于兩點,為坐標原點,且,若點在以線段為直徑的圓內,求實數(shù)的取值范圍.
【答案】(1);(2).
【解析】
(1)求出直線與軸的交點坐標,可得,再由橢圓的方程可得,聯(lián)立方程可求出,從而可得橢圓的標準方程;
(2) 設,,聯(lián)立直線的方程與橢圓的方程消去,由判別式求出的范圍,再利用根與系數(shù)關系求出和,根據(jù),可得,,其中點坐標,由兩點間距離公式可得,又點在以線段為直徑的圓內,故,即,把和結果代入,即可求出實數(shù)的取值范圍.
解:(1)由已知可得直線與軸的交點坐標,所以①,
又②,由①②解得,,
所以橢圓C的方程為.
(2)設,,
由得,
由,又,解得 ①,
由根與系數(shù)關系,得,
由,可得,,
,
設是的中點,則,
由已知可得,即,
整理得,
又,
所以,
所以,
即,
即,所以 ②,
綜上所述,由①②得a的取值范圍為.
科目:高中數(shù)學 來源: 題型:
【題目】已知點,點為曲線上的動點,過作軸的垂線,垂足為,滿足。
(1)求曲線的方程;
(2)直線與曲線交于兩不同點,( 非原點),過,兩點分別作曲線的切線,兩切線的交點為。設線段的中點為,若,求直線的斜率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,曲線:與直線:交于,兩點.
(1)若的面積為,求;
(2)軸上是否存在點,使得當變動時,總有?若存在,求以線段為直徑的圓的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】近年來,共享單車在我國各城市迅猛發(fā)展,為人們的出行提供了便利,但也給城市的交通管理帶來了一些困難,為掌握共享單車在省的發(fā)展情況,某調查機構從該省抽取了5個城市,并統(tǒng)計了共享單車的指標和指標,數(shù)據(jù)如下表所示:
城市1 | 城市2 | 城市3 | 城市4 | 城市5 | |
指標 | 2 | 4 | 5 | 6 | 8 |
指標 | 3 | 4 | 4 | 4 | 5 |
(1)試求與間的相關系數(shù),并說明與是否具有較強的線性相關關系(若,則認為與具有較強的線性相關關系,否則認為沒有較強的線性相關關系).
(2)建立關于的回歸方程,并預測當指標為7時,指標的估計值.
(3)若某城市的共享單車指標在區(qū)間的右側,則認為該城市共享單車數(shù)量過多,對城市的交通管理有較大的影響交通管理部門將進行治理,直至指標在區(qū)間內現(xiàn)已知省某城市共享單車的指標為13,則該城市的交通管理部門是否需要進行治理?試說明理由.
參考公式:回歸直線中斜率和截距的最小二乘估計分別為
,,相關系數(shù)
參考數(shù)據(jù):,,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】拋物線C1:y=x2(p>0)的焦點與雙曲線C2:-y2=1的右焦點的連線交C1于第一象限的點M.若C1在點M處的切線平行于C2的一條漸近線,則p=( ).
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù) .
(1)若函數(shù)在上是增函數(shù),求正數(shù)的取值范圍;
(2)當時,設函數(shù)的圖象與x軸的交點為,,曲線在,兩點處的切線斜率分別為,,求證:+ .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)圖象相鄰兩條對稱軸的距離為,將函數(shù)的圖象向左平移個單位后,得到的圖象關于y軸對稱則函數(shù)的圖象( )
A. 關于直線對稱 B. 關于直線對稱
C. 關于點對稱 D. 關于點對稱
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com