Loading [MathJax]/jax/output/CommonHTML/jax.js
9.已知函數(shù)f(x)=mx+lnx.
(Ⅰ)若f(x)的最大值為-1,求實(shí)數(shù)m的值;
(Ⅱ)若f(x)的兩個(gè)零點(diǎn)為x1,x2且ex1≤x2,求y=(x1-x2)f′(x1+x2)的最小值.(其中e為自然對(duì)數(shù)的底數(shù),f′(x)是f(x)的導(dǎo)函數(shù))

分析 (Ⅰ)求出函數(shù)的導(dǎo)數(shù),通過(guò)討論m的范圍,求出函數(shù)的單調(diào)區(qū)間,從而求出函數(shù)的最大值,得到關(guān)于m的方程,求出m的值即可;
(Ⅱ)得到y(tǒng)=x1x2x1+x2+m(x1-x2)=1x2x11+x2x1+lnx2x1令g(t)=1t1+t+mt(t=x2x1≥e),根據(jù)函數(shù)的單調(diào)性求出g(t)的最小值,即y的最小值即可.

解答 解:(Ⅰ)f′(x)=1+mxx,
m≥0時(shí),f′(x)>0,f(x)在(0,+∞)單調(diào)遞增,f(x)在(0,+∞)無(wú)最大值.
m<0,易知當(dāng)x∈(0,-1m)時(shí),f′(x)>0,f(x)在(0,-1m)單調(diào)遞增;
當(dāng)x∈(-1m,+∞)時(shí),f′(x)<0,f(x)在(-1m,+∞)單調(diào)遞減,
故f(x)max=f(-1m)=ln(-1m)-1=-1,即m=-1,
綜上:m=-1.
(Ⅱ)y=(x1-x2)f′(x1+x2)=x1x2x1+x2+m(x1-x2),
{lnx1+mx1=0lnx2+mx2=0,即lnx1x2=-m(x1-x2),
故y=x1x2x1+x2+m(x1-x2)=1x2x11+x2x1+lnx2x1
令g(t)=1t1+t+mt(t=x2x1≥e),
而g′(t)=t2+1tt+12>0,
故g(t)在[e,+∞)單調(diào)遞增.
故g(t)min=g(e)=21+e,
y的最小值為21+e

點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性、最值問(wèn)題,考查導(dǎo)數(shù)的應(yīng)用以及分類討論思想,是一道中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.若集合A={x|x2+3x-4>0},集合B={x|-1<x≤3},且M=A∩B,則有( �。�
A.-1∈MB.0∈MC.1∈MD.2∈M

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.自變量x取什么值時(shí),下列函數(shù)為無(wú)窮小.
(1)y=1x2;
(2)y=2x-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知,焦點(diǎn)在x軸上的橢圓的上、下頂點(diǎn)分別為B2、B1,左焦點(diǎn)和右頂點(diǎn)分別為F、A1.經(jīng)過(guò)點(diǎn)B2的直線l與以橢圓的中心為頂點(diǎn)、B2為焦點(diǎn)的拋物線交于A、B兩點(diǎn),且點(diǎn)B2恰為線段AB的三等分點(diǎn),直線l1過(guò)點(diǎn)B1且垂直于y軸,線段AB的中點(diǎn)M到直線l1的距離為94.若FB2A1B2=1-23,則橢圓的標(biāo)準(zhǔn)方程是(  )
A.x24+y2=1B.x24+y22=1C.x26+y24=1D.x23+y2=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知命題p:2x2-9x+a<0,命題q:x2-5x+6<0,且非p是非q的充分條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.設(shè)f(x)是定義在(0,+∞)上的增函數(shù),對(duì)定義域內(nèi)的任意x,y都滿足f(xy)=f(x)+f(y),
(1)求f(1);
(2)若f(2)=1,解不等式f(x)+f(x-3)≤2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.如圖,在平面四邊形ABCD中,AB=8,AD=5,CD=33,∠A=60°,∠D=150°,則BC=7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知數(shù)列{an}是等差數(shù)列,Sn為其前n項(xiàng)和,若平面上的三點(diǎn)A,B,C共線,且OA=a4OB+a97OC,則S100=( �。�
A.100B.101C.50D.51

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知M為拋物線y2=8x上的一點(diǎn),F(xiàn)為拋物線的焦點(diǎn),若∠MFO=120°,N(-2,0)(O為坐標(biāo)原點(diǎn)),則△MNF的面積為83

查看答案和解析>>

同步練習(xí)冊(cè)答案