8.己知將函數(shù)f(x)=$\sqrt{3}$sinxcosx+cos2x-$\frac{1}{2}$的圖象向左平移$\frac{5π}{12}$個(gè)單位長度后得到y(tǒng)=g(x)的圖象,則g(x)在[-$\frac{π}{12}$,$\frac{π}{3}$]上的值域?yàn)椋ā 。?table class="qanwser">A.[-$\frac{1}{2}$,1]B.[-1,$\frac{1}{2}$]C.[-$\frac{\sqrt{3}}{2}$,$\frac{1}{2}$]D.[-$\frac{1}{2}$,$\frac{\sqrt{3}}{2}$]

分析 利用三角函數(shù)的恒等變換化簡函數(shù)的解析式,再利用函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律求得g(x)的解析式,再來一用正弦函數(shù)的定義域和值域,求得g(x)在[-$\frac{π}{12}$,$\frac{π}{3}$]上的值域.

解答 解:將函數(shù)f(x)=$\sqrt{3}$sinxcosx+cos2x-$\frac{1}{2}$=$\frac{\sqrt{3}}{2}$sin2x+$\frac{1}{2}$cos2x=sin(2x+$\frac{π}{6}$)
的圖象向左平移$\frac{5π}{12}$個(gè)單位長度后,
得到y(tǒng)=g(x)=sin(2x+$\frac{5π}{6}$+$\frac{π}{6}$)=sin(2x+π)=-sin2x 的圖象,
在[-$\frac{π}{12}$,$\frac{π}{3}$]上,2x∈[-$\frac{π}{6}$,$\frac{2π}{3}$],-sin2x∈[-1,$\frac{1}{2}$],
則g(x)在[-$\frac{π}{12}$,$\frac{π}{3}$]上的值域?yàn)閇-1,$\frac{1}{2}$],
故選:B.

點(diǎn)評 本題主要考查三角函數(shù)的恒等變換,函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,正弦函數(shù)的定義域和值域,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知圓O:x2+y2=4及一點(diǎn)P(-1,0),Q在圓O上運(yùn)動(dòng)一周,PQ的中點(diǎn)M形成軌跡C.
(1)求軌跡C的方程;
(2)若直線PQ的斜率為1,該直線與軌跡C交于異于M的一點(diǎn)N,求△CMN的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.設(shè)函數(shù)f(x)=sin(ωx+ϕ),A>0,ω>0,若f(x)在區(qū)間$[\frac{π}{6},\frac{π}{2}]$上單調(diào),且$f({\frac{π}{2}})=f({\frac{2π}{3}})=-f({\frac{π}{6}})$,則f(x)的最小正周期為π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.如圖,設(shè)點(diǎn)A是單位圓上的一定點(diǎn),動(dòng)點(diǎn)P從點(diǎn)A出發(fā)在圓上按逆時(shí)針方向旋轉(zhuǎn)一周,點(diǎn)P所旋轉(zhuǎn)過的弧的長為l,弦AP的長為d,則函數(shù)d=f(l)的圖象大致是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知sinα是方程5x2-7x-6=0的根.求$\frac{{sin({-α-\frac{3}{2}π})•sin({\frac{3}{2}π-α})•{{tan}^2}(2π-α)}}{{cos({\frac{π}{2}-α})•cos({\frac{π}{2}+α})•cot(π-α)}}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,滿足(3-m)Sn+2man=m+3(n∈N*).其中m為常數(shù),且m≠-3,m≠0.
(1)求證:數(shù)列{an}是等比數(shù)列.
(2)若數(shù)列{an}的公比q=f(m),數(shù)列{bn}滿足b1=a1,bn=$\frac{3}{2}$f(bn-1)(n∈N*,n≥2),求證:數(shù)列{$\frac{1}{_{n}}$}為等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.下列函數(shù)中,在(0,$\frac{π}{2}$)上是增函數(shù)的偶函數(shù)是( 。
A.y=|sinx|B.y=|sin2x|C.y=|cosx|D.y=tanx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知數(shù)列,a1=2,an+1=2an+2n+1
(1)求證:數(shù)列{$\frac{{a}_{n}}{{2}^{n}}$}是等差數(shù)列;
(2)設(shè)數(shù)列bn=$\frac{n+2}{(n+1){a}_{n}}$,求證b1+b2+b3+…+bn<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,在平行四邊形ABCD中,E、F分別為BC與DC中點(diǎn),G為BF與DE交點(diǎn),若$\overrightarrow{AB}=\overrightarrow a$,$\overrightarrow{AD}=\overrightarrow b$,試以$\overrightarrow a$,$\overrightarrow b$為基底表示下面向量
(1)$\overrightarrow{DB}$
(2)$\overrightarrow{AC}$
(3)$\overrightarrow{DE}$
(4)$\overrightarrow{CG}$.

查看答案和解析>>

同步練習(xí)冊答案