【題目】如圖:在直角坐標(biāo)系中,設(shè)橢圓的左右兩個焦點分別為、.過右焦點與軸垂直的直線與橢圓C相交,其中一個交點為.
(1)求橢圓C的方程;
(2)設(shè)橢圓C的一個頂點為,求點M到直線的距離;
(3)過中點的直線交橢圓于P、Q兩點,求長的最大值以及相應(yīng)的直線方程.
【答案】(1);(2);(3),
【解析】
(1)設(shè)右焦點為,令,代入橢圓方程,可得,,解方程可得,,進(jìn)而得到橢圓方程;(2)求得直線的方程,由點到直線的距離公式,計算即可得到所求值;(3)過中點的直線的方程設(shè)為,代入橢圓方程,運(yùn)用韋達(dá)定理和弦長公式,化簡整理即可得到弦長的取值范圍,再由斜率為0,求得直線方程,代入橢圓方程,求得的長,即可得到最大值.
(1)設(shè)右焦點為,
令,代入橢圓可得,由,即有,,
又,解得,,
則橢圓方程為.
(2)由題意可得,,
直線的方程為,
則點到直線的距離為;
(3)過中點的直線的方程設(shè)為,
代入橢圓方程,可得,
由于中點在橢圓內(nèi),故直線與橢圓相交,
設(shè)交點,,即有,,
弦長
,
令,
則,
當(dāng),即時,取得最小值,
即有,
當(dāng)直線時,代入橢圓方程,可得,
即有,
綜上可得,的最大值為,此時直線方程為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點分別為、,離心率為,點是橢圓上的一個動點,且面積的最大值為.
(1)求橢圓的方程;
(2)過點作直線交橢圓于、兩點,過點作直線的垂線交圓:于另一點.若的面積為3,求直線的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,圓與直線相切于點,與正半軸交于點,與直線在第一象限的交點為. 點為圓上任一點,且滿足,以為坐標(biāo)的動點的軌跡記為曲線.
(1)求圓的方程及曲線的方程;
(2)若兩條直線和分別交曲線于點和,求四邊形面積的最大值,并求此時的的值.
(3)已知曲線的軌跡為橢圓,研究曲線的對稱性,并求橢圓的焦點坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,的參數(shù)方程為(t為參數(shù)).以坐標(biāo)原點O為極點,x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為.
(1)求的普通方程和曲線C的直角坐標(biāo)方程;
(2)求曲線C上的點到距離的最大值及該點坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】市場上有一種新型的強(qiáng)力洗衣粉,特點是去污速度快,已知每投放(且)個單位的洗衣粉液在一定量水的洗衣機(jī)中,它在水中釋放的濃度(克/升)隨著時間(分鐘)變化的函數(shù)關(guān)系式近似為,其中,若多次投放,則某一時刻水中的洗衣液濃度為每次投放的洗衣液在相應(yīng)時刻所釋放的濃度之和,根據(jù)經(jīng)驗,當(dāng)水中洗衣液的濃度不低于4(克/升)時,它才能起有效去污的作用.
(1)若只投放一次4個單位的洗衣液,則有效去污時間可能達(dá)幾分鐘?
(2)若先投放2個單位的洗衣液,6分鐘后投放個單位的洗衣液,要使接下來的4分鐘中能夠持續(xù)有效去污,試求的最小值(精確到0.1,參考數(shù)據(jù): 取).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列共有項,記該數(shù)列前項,,…,中的最大項為,該數(shù)列后項,,…,中的最小項為,(1,2,3,…,).
(1)若數(shù)列的通項公式為,求數(shù)列的通項公式;
(2)若數(shù)列是單調(diào)數(shù)列,且滿足,,求數(shù)列的通項公式;
(3)試構(gòu)造一個數(shù)列,滿足,其中是公差不為零的等差數(shù)列,是等比數(shù)列,使得對于任意給定的正整數(shù),數(shù)列都是單調(diào)遞增的,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)列中,若是正整數(shù),且,,則稱為“D-數(shù)列”.
(1) 舉出一個前五項均不為零的“D-數(shù)列”(只要求依次寫出該數(shù)列的前五項);
(2) 若“D-數(shù)列”中,,,數(shù)列滿足,,寫出數(shù)列的通項公式,并分別判斷當(dāng)時,與的極限是否存在,如果存在,求出其極限值(若不存在不需要交代理由);
(3) 證明: 設(shè)“D-數(shù)列”中的最大項為,證明: 或.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若,求的單調(diào)區(qū)間;
(2)若關(guān)于的方程有四個不同的解,,,,求實數(shù),應(yīng)滿足的條件;
(3)在(2)條件下,若,,,成等比數(shù)列,求用表示.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com