5.若函數(shù)$f(x)=\left\{\begin{array}{l}{log_2}x,x>0\\ 1-{x^2},x<0\end{array}\right.$,則不等式xf(-x)>0的解集是( 。
A.(-1,0)∪(0,1)B.(-∞,-1)∪(1,∞)C.(-1,0)∪(1,∞)D.(-∞,-1)∪(0,1)

分析 根據(jù)分段函數(shù)的定義域進行解不等式即可.

解答 解:∵函數(shù)$f(x)=\left\{\begin{array}{l}{log_2}x,x>0\\ 1-{x^2},x<0\end{array}\right.$,
∴當(dāng)x>0時,不等式xf(-x)轉(zhuǎn)化為:x(1-x2)>0,解得:0<x<1;
當(dāng)x<0時,不等式xf(-x)轉(zhuǎn)化為:xlog2-x>0,解得:-1<x<0
綜上所述:不等式xf(-x)>0的解集(-1,0)∪(0,1)
故選A:.

點評 本題考查了分段函數(shù)在不等式中的解法,要特別注意分段函數(shù)的定義域問題.屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.寫出命題“若α=$\frac{π}{4}$,則tanα=1”的逆命題、否命題、逆否命題,并判斷它們的真假.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.等比數(shù)列{an}的各項均為正數(shù),且a3a7+a4a6=8,則log2a1+log2a2+…+log2a9=( 。
A.7B.8C.9D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知函數(shù)f(x)=x2-ax的圖象在點A(1,f(1))處的切線l與直線x+3y+2=0垂直,若數(shù)列{$\frac{1}{f(n)}$}的前n項和為Sn,則S2017的值為( 。
A.$\frac{2014}{2015}$B.$\frac{2015}{2016}$C.$\frac{2016}{2017}$D.$\frac{2017}{2018}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.在等差數(shù)列{an}中,a1=3,11a5=5a8,則前n項和Sn的最大值為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)函數(shù)f(x)=sin(2x+φ)(φ∈[0,π]),其導(dǎo)數(shù)f'(x)的圖象向右平移$\frac{π}{3}$個單位后關(guān)于原點對稱,
則φ=(  )
A.$\frac{π}{3}$B.$\frac{π}{4}$C.$\frac{π}{6}$D.$\frac{π}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=-4x+2x+1+2.
(1)求f(x)在[-1,1]上的值域;
(2)若關(guān)于x的函數(shù)F(x)=f(x)-m在[-1,1]上恰有一個零點,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.對于實數(shù)a和b,定義運算a*b=$\left\{\begin{array}{l}{a(b+1),a≥b}\\{b(a+1),a<b}\end{array}\right.$,則式子$ln{e^2}*{(\frac{1}{9})^{-\frac{1}{2}}}$的值為9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,已知AB⊥平面ACD,DE∥AB,△ACD是以A為直角的等腰直角三角形,AD=DE=2AB,且F是CD的中點.
(1)求證AF∥平面BCE;
(2)設(shè)AB=2,求四棱錐C-ABED的體積.

查看答案和解析>>

同步練習(xí)冊答案