11.把正整數(shù)排列成如圖甲的三角形數(shù)陣,然后擦去第偶數(shù)行的奇數(shù)和第奇數(shù)行中的偶數(shù),得到如圖乙的三角數(shù)陣,再把圖乙中的數(shù)按從小到大的順序排成一列,得到數(shù)列{an},若an=623,則n的值為324.

分析 根據(jù)題意,分析圖乙,可得其第k行有k個(gè)數(shù),則前k行共有$\frac{k(k+1)}{2}$個(gè)數(shù),第k行最后的一個(gè)數(shù)為k2,從第三行開(kāi)始,以下每一行的數(shù),從左到右都是公差為2的等差數(shù)列;進(jìn)而由242<623<252,可得623出現(xiàn)在第25行,又第25行第一個(gè)數(shù)為242+1=577,由等差數(shù)列的性質(zhì),可得該行第24個(gè)數(shù)為623,由前24行的數(shù)字?jǐn)?shù)目,相加可得答案.

解答 解:分析圖乙,可得①第k行有k個(gè)數(shù),則前k行共有$\frac{k(k+1)}{2}$個(gè)數(shù),
②第k行最后的一個(gè)數(shù)為k2,
③從第三行開(kāi)始,以下每一行的數(shù),從左到右都是公差為2的等差數(shù)列,
又由242<623<252,
則623出現(xiàn)在第25行,
第25行第一個(gè)數(shù)為242+1=577,
所以第$\frac{623-577}{2}$+1=24個(gè)數(shù)623,
則n=$\frac{24×(24+1)}{2}$+24=324
故答案為:324

點(diǎn)評(píng) 本題考查歸納推理的運(yùn)用,關(guān)鍵在于分析乙圖,發(fā)現(xiàn)每一行的數(shù)遞增規(guī)律與各行之間數(shù)字?jǐn)?shù)目的變化規(guī)律.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.在等差數(shù)列{an}中,若a1=6,a3=2,則a5=( 。
A.6B.4C.0D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的左、右焦點(diǎn)分別為F1(-c,0)、F2(c,0),過(guò)橢圓中心的弦PQ滿足|PQ|=2,∠PF2Q=90°,且△PF2Q的面積為1.
(Ⅰ)求橢圓的方程;
(Ⅱ)直線l不經(jīng)過(guò)點(diǎn)A(0,1),且與橢圓交于M,N兩點(diǎn),若以MN為直徑的圓經(jīng)過(guò)點(diǎn)A,求證:直線l過(guò)定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知F是橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的右焦點(diǎn),點(diǎn)P在橢圓C上,線段PF與圓${(x-\frac{c}{3})^2}+{y^2}=\frac{b^2}{9}$相切于點(diǎn)Q,且PQ=2QF,則橢圓C的離心率等于( 。
A.$\frac{{\sqrt{5}}}{3}$B.$\frac{2}{3}$C.$\frac{{\sqrt{2}}}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知隨機(jī)變量ξ服從正態(tài)分布N(1,σ2),若P(ξ>2)=0.15,則P(0≤ξ≤1)=0.35.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知點(diǎn)A,B為圓C:x2+y2=4上的任意兩點(diǎn),且|AB|>2,若線段AB中點(diǎn)組成的區(qū)域?yàn)镸,在圓C內(nèi)任取一點(diǎn),則該點(diǎn)落在區(qū)域M內(nèi)的概率為$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.執(zhí)行如圖所示的程序框圖,若輸出x的值為127,則輸入的正整數(shù)x的所有可能取值的個(gè)數(shù)為( 。
A.2B.5C.3D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且2cos2$\frac{A-B}{2}$cosB-sin(A-B)sinB+cos(A+C)=-$\frac{3}{5}$.若a=8,b=$\sqrt{3}$,那么∠B=arcsin$\frac{\sqrt{3}}{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.如圖,某處立交橋?yàn)橐欢螆A弧AB.已知地面上線段AB=40米,O為AB中點(diǎn).橋上距離地面最高點(diǎn)P,且OP高5米.工程師在OB中點(diǎn)C處發(fā)現(xiàn)他的正上方橋體有裂縫.需臨時(shí)找根直立柱,立于C處,用于支撐橋體.求直立柱的高度.(精確到0.01米).

查看答案和解析>>

同步練習(xí)冊(cè)答案