已知角A,B,C是△ABC三邊a,b,c所對(duì)的角,,,,且.
(I)若△ABC的面積S=,求b+c的值;
(II)求b+c的取值范圍.
(I);(II).
解析試題分析:(I)先根據(jù)求出A的值,再根據(jù)三角形的面積公式求出的值,再根據(jù)余弦定理求出的值,那么即可得到的值,則得解;(II)由余弦定理找到邊和角的關(guān)系,求得,再由角B的取值范圍求得對(duì)應(yīng)的的取值范圍,那么的取值范圍得解.
試題解析:(I)由,,且,得
,即,所以 2分
∵,∴. 3分
∵,,∴. 4分
由余弦定理,得,,
∴,即. 6分
(II)由正弦定理,得,且, 8分
∴, 10分
∵,所以,∴,
故的取值范圍是. 12分
考點(diǎn):1、平面向量的數(shù)量積;2、解三角形;3、余弦定理;4、正弦定理;5、三角函數(shù)恒等變換.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)△的內(nèi)角所對(duì)邊的長(zhǎng)分別為,且有.
(Ⅰ)求角A的大。
(Ⅱ)若,,為的中點(diǎn),求的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在△ABC中,角A,B,C所對(duì)的邊為a,b,c,已知 a=2bsinA,.
(1)求B的值;
(2)若△ABC的面積為,求a,b的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知中,,,設(shè),并記
(1)求函數(shù)的解析式及其定義域;
(2)設(shè)函數(shù),若函數(shù)的值域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/5c/a/f3qlg1.png" style="vertical-align:middle;" />,試求正實(shí)數(shù)的值
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知,函數(shù).
(1)求的最值和單調(diào)遞減區(qū)間;
(2)已知在△ABC中,角A、B、C的對(duì)邊分別為,,求△ABC的面積的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com