【題目】已知95個數(shù)a1a2,a3,…,a95a1a2+a1a3+…+a94a95的最小正值是______________

【答案】13

【解析】根據(jù)題意,t= a1a2+a1a3+…+a94a95

2t=2(a1a2+a1a3+…+a94a95)=(a1+a2+…+a95)2(a12+a22+…+a952),

又由a1,a2,…,a95每個都只能取+11兩個值之一,a12+a22+…+a952=95

2t=(a1+a2+…+a95)295,

要使t取最小正數(shù),t(a1+a2+…+a95)2大于95即可,

a1+a2+…+a95為奇數(shù)個1、1的和,不會得偶數(shù),

則要使所求值取最小正數(shù),須使(a1+a2+…+a95)=±11,

因此t的最小值為.

故答案為:13.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),

(1)當時,求的單調區(qū)間;

(2)當時,若存在使得成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】近年來許多地市空氣污染較為嚴重,現(xiàn)隨機抽取某市一年(365天)內100天的空氣質量指數(shù)()的監(jiān)測數(shù)據(jù),統(tǒng)計結果如表:

指數(shù)

空氣質量

優(yōu)

輕度污染

中度污染

重度污染

嚴重污染

天數(shù)

4

13

18

30

20

15

記某企業(yè)每天由空氣污染造成的經濟損失為(單位:元),指數(shù)為.當在區(qū)間內時,對企業(yè)沒有造成經濟損失;當在區(qū)間內時,對企業(yè)造成的經濟損失與成直線模型(當指數(shù)為150時,造成的經濟損失為1100元,當指數(shù)為200時,造成的經濟損失為1400元);當指數(shù)大于300時,造成的經濟損失為2000元. 

(1)試寫出的表達式;

(2)試估計在本年內隨機抽取1天,該天經濟損失大于1100且不超過1700元的概率;

(3)若本次抽取的樣本數(shù)據(jù)有30天是在供暖季,這30天中有8天為嚴重污染,完成列聯(lián)表,并判斷是否有的把握認為該市本年度空氣嚴重污染與供暖有關?

非嚴重污染

嚴重污染

合計

供暖季

非供暖季

合計

附:

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

,其中

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),

)求曲線處的切線方程.

)求的單調區(qū)間.

)設,其中,證明:函數(shù)僅有一個零點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中

(Ⅰ)若函數(shù)存在相同的零點,求的值;

(Ⅱ)若存在兩個正整數(shù),當時,有同時成立,求的最大值及取最大值時的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)求函數(shù)的單調區(qū)間;

(2)當時,函數(shù)的圖象恒不在軸的上方,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列滿足: , , . 

(1)證明: ;

(2)證明: ;

(3)證明: .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在四棱錐中, ,點M是線段AB上的一點,且

(1)證明:平面平面ABCD;

(2)求直線CM與平面PCD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】要分析學生初中升學考試的數(shù)學成績對高一年級數(shù)學學習有什么影響,在高一年級學生中隨機抽取10名學生,分析他們入學的數(shù)學成績(x)和高一年級期末數(shù)學考試成績(y)(如下表):

(1)畫出散點圖;

(2)判斷入學成績(x)與高一期末考試成績(y)是否有線性相關關系;

(3)如果x與y具有線性相關關系,求出回歸直線方程;

編號

1

2

3

4

5

6

7

8

9

10

x

63

67

45

88

81

71

52

99

58

76

y

65

78

52

85

92

89

73

98

56

75

查看答案和解析>>

同步練習冊答案