【題目】已知函數(shù), .
(1)當時,求的單調(diào)區(qū)間;
(2)當時,若存在使得成立,求實數(shù)的取值范圍.
【答案】(1) 的單調(diào)遞增區(qū)間為,不存在單調(diào)遞減區(qū)間;(2)
【解析】試題分析:(1)當時, ,對函數(shù)求導,令解出x的范圍,可得函數(shù)的單調(diào)遞增區(qū)間為,即定義域內(nèi)單調(diào)遞增;(2) 據(jù)題意,得在上有解,設,則的最小值大于0,對函數(shù)求導判斷單調(diào)性,進而得出最小值,解出m的范圍即可.
試題解析:(1)當時, ,所以 ,所以當時, ,所以的單調(diào)遞增區(qū)間為,不存在單調(diào)遞減區(qū)間.
(2)據(jù)題意,得在上有解,
設 ,
則,所以當, 時, ,所以在區(qū)間上是增函數(shù),所以當時, ,解得,所以的取值范圍是.
點睛: 本題考查函數(shù)導數(shù)與單調(diào)性,恒成立有解問題.方程的有解問題可參變分離,轉(zhuǎn)化為求函數(shù)的值域問題處理. 恒成立問題以及可轉(zhuǎn)化為恒成立問題的問題,往往可利用參變分離的方法,轉(zhuǎn)化為求函數(shù)最值處理.也可構(gòu)造新函數(shù)然后利用導數(shù)來求解.注意利用數(shù)形結(jié)合的數(shù)學思想方法.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
(1)求函數(shù)f(x)是單調(diào)區(qū)間;
(2)如果關(guān)于x的方程有實數(shù)根,求實數(shù)的取值集合;
(3)是否存在正數(shù)k,使得關(guān)于x的方程有兩個不相等的實數(shù)根?如果存在,求k滿足的條件;如果不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列中, ,前項和滿足().
⑴ 求數(shù)列的通項公式;
⑵ 記,求數(shù)列的前項和;
⑶ 是否存在整數(shù)對(其中, )滿足?若存在,求出所有的滿足題意的整數(shù)對;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,三棱臺中, 側(cè)面與側(cè)面是全等的梯形,若,且.
(Ⅰ)若, ,證明: ∥平面;
(Ⅱ)若二面角為,求平面與平面所成的銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖在四棱錐P-ABCD中,底面ABCD為矩形,側(cè)面PAD底面ABCD, ;
(1)求證:平面PAB平面PCD;
(2)若過點B的直線垂直平面PCD,求證: //平面PAD.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】隨著資本市場的強勢進入,互聯(lián)網(wǎng)共享單車“忽如一夜春風來”,遍布了一二線城市的大街小巷.為了解共享單車在市的使用情況,某調(diào)查機構(gòu)借助網(wǎng)絡進行了問卷調(diào)查,并從參與調(diào)查的網(wǎng)友中抽取了200人進行抽樣分析,得到表格:(單位:人)
經(jīng)常使用 | 偶爾或不用 | 合計 | |
30歲及以下 | 70 | 30 | 100 |
30歲以上 | 60 | 40 | 100 |
合計 | 130 | 70 | 200 |
(1)根據(jù)以上數(shù)據(jù),能否在犯錯誤的概率不超過0.15的前提下認為市使用共享單車情況與年齡有關(guān)?
(2)現(xiàn)從所抽取的30歲以上的網(wǎng)友中利用分層抽樣的方法再抽取5人.從這5人中,再隨機選出2人贈送一件禮品,求選出的2人中至少有1人經(jīng)常使用共享單車的概率.
參考公式: ,其中.
參考數(shù)據(jù):
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知,.
(I)若,求函數(shù)在點處的切線方程;
(II)若函數(shù)在上是增函數(shù),求實數(shù)的取值范圍;
(III)令,(是自然對數(shù)的底數(shù)),求當實數(shù)等于多少時,可以使函數(shù)取得最小值為3.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知為橢圓: 的右焦點, , , 為橢圓的下、上、右三個頂點, 與的面積之比為.
(1)求橢圓的標準方程;
(2)試探究在橢圓上是否存在不同于點, 的一點滿足下列條件:點在軸上的投影為, 的中點為,直線交直線于點, 的中點為,且的面積為.若不存在,請說明理由;若存在,求出點的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知95個數(shù)a1,a2,a3,…,a95, 則a1a2+a1a3+…+a94a95的最小正值是______________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com