A. | 75° | B. | 60° | C. | 45° | D. | 30° |
分析 由題意由于圖中已有了兩兩垂直的三條直線(xiàn),所以可以建立空間直角坐標(biāo)系,先準(zhǔn)確寫(xiě)出個(gè)點(diǎn)的坐標(biāo),利用線(xiàn)面角和線(xiàn)與平面的法向量所構(gòu)成的兩向量的夾角之間的關(guān)系即可求解.
解答 解:如圖所示,以O(shè)為原點(diǎn)建立空間直角坐標(biāo)系O-xyz.
設(shè)OD=SO=OA=OB=OC=a,
則A(a,0,0),B(0,a,0),C(-a,0,0),P(0,-$\frac{a}{2}$,$\frac{a}{2}$).
則$\overrightarrow{CA}$=(2a,0,0),$\overrightarrow{PA}$=(-a,-$\frac{a}{2}$,$\frac{a}{2}$).
設(shè)平面PAC的法向量為$\overrightarrow{n}$=(x,y,z),則$\left\{\begin{array}{l}{2ax=0}\\{-ax-\frac{a}{2}y+\frac{a}{2}z=0}\end{array}\right.$,
可求得$\overrightarrow{n}$=(0,1,1),
則cos<$\overrightarrow{BC}$,$\overrightarrow{n}$>=$\frac{1}{2}$.
∴<$\overrightarrow{BC}$,$\overrightarrow{n}$>=60°,
∴直線(xiàn)BC與平面PAC所成的角為90°-60°=30°.
故選:D.
點(diǎn)評(píng) 此題重點(diǎn)考查了直線(xiàn)與平面所成的角的概念及利用空間向量的方法求解空間中的直線(xiàn)與平面的夾角.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 輸入a,b,c三個(gè)數(shù),按從小到大的順序輸出 | |
B. | 輸入a,b,c三個(gè)數(shù),按從大到小的順序輸出 | |
C. | 輸入a,b,c三個(gè)數(shù),按輸入順序輸出 | |
D. | 輸入a,b,c三個(gè)數(shù),無(wú)規(guī)律地輸出 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 16 | B. | 17 | C. | 18 | D. | 19 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 充要條件 | B. | 充分不必要條件 | ||
C. | 必要不充分條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com