10.已知三角形ABC中,角A、B、C所對邊分別為a、b、c,滿足$C=\frac{π}{6}$且$b=4\sqrt{3}sinB$,則三角形ABC面積的最大值為6+3$\sqrt{3}$.

分析 利用正弦定理求出c,利用余弦定理以及基本不等式求出ab的范圍,然后求解三角形的面積.

解答 解:因為$C=\frac{π}{6}$,又$\frac{c}{sinC}=\frac{sinB}=4\sqrt{3}$,得${c}=2\sqrt{3}$,
而${c^2}={a^2}+{b^2}-2abcosC={a^2}+{b^2}-\sqrt{3}ab≥({2-\sqrt{3}})ab$,
所以$ab≤\frac{12}{{({2-\sqrt{3}})}}=12({2+\sqrt{3}})$,當且僅當$a=b=\sqrt{12({2+\sqrt{3}})}$時等號成立,
即${S_{△ABC}}=\frac{1}{2}absinC=\frac{1}{4}ab≤3({2+\sqrt{3}})=6+3\sqrt{3}$,即當$a=b=\sqrt{12({2+\sqrt{3}})}$時,
三角形ABC面積最大值為$6+3\sqrt{3}$.
故答案為:6+3$\sqrt{3}$.

點評 本題考查三角形的解法,正弦定理以及余弦定理的應用,基本不等式的應用,考查轉化思想以及計算能力.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

1.已知{$\frac{1}{{a}_{n}}$}是等差數(shù)列,且a1=1,a4=4,則a10=( 。
A.-$\frac{4}{5}$B.-$\frac{5}{4}$C.$\frac{4}{13}$D.$\frac{13}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.如圖所示,小波從A街區(qū)開始向右走,在每個十字路口都會遇到紅綠燈,要是遇到綠燈則小波繼續(xù)往前走,遇到紅燈就往回走,假設任意兩個十字路口的綠燈亮或紅燈亮都是相互獨立的,且綠燈亮的概率都是$\frac{2}{3}$,紅燈亮的概率都是$\frac{1}{3}$.

(1)求小波遇到4次紅綠燈后,處于D街區(qū)的概率;
(2)若小波一共遇到了3次紅綠燈,設此時小波所處的街區(qū)與A街區(qū)相距的街道數(shù)為ξ(如小波若處在A街區(qū)則相距零個街道,處在D,E街區(qū)都是相距2個街道),求ξ的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.根據(jù)下列條件求拋物線方程:
(1)頂點在原點,焦點為F(0,$\frac{1}{4}$)的拋物線的標準方程;
(2)頂點在原點,準線方程為x=3的拋物線方程;
(3)頂點在原點,對稱軸為坐標軸,焦點在直線y=2x-4上的拋物線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.$\sqrt{co{s}^{2}201.2°}$可化為( 。
A.cos201.2°B.-cos201.2°C.sin201.2°D.tan201.2°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知橢圓C方程為$\frac{{x}^{2}}{{a}^{2}}$+y2=1,過右焦點斜率為l的直線到原點的距離為$\frac{\sqrt{2}}{2}$.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設M(2,0),過點M的直線與橢圓C相交于E,F(xiàn)兩點,當線段EF的中點落在由四點C1(-1,0),C2(1,0),B1(0,-1),B2(0,1)構成的四邊形內(包括邊界)時,求直線斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.已知向量$\overrightarrow{a}$=(cos5°,sin5°),$\overrightarrow$=(cos65°,sin65°),則|$\overrightarrow{a}$+2$\overrightarrow$|=$\sqrt{7}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.若正整數(shù)N除以正整數(shù)m后的余數(shù)為n,則記為N=n(mod m),例如10=2(mod 4),下面程序框圖的算法源于我國古代聞名中外的《中國剩余定理》.執(zhí)行該程序框圖,則輸出的i等于( 。
A.4B.8C.16D.32

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.函數(shù)$f(x)=(sinx+\sqrt{3}cosx)(cosx-\sqrt{3}sinx)$的最小正周期是(  )
A.$\frac{π}{2}$B.πC.$\frac{3π}{2}$D.

查看答案和解析>>

同步練習冊答案