3.設(shè)拋物線y2=8x的焦點為F,準(zhǔn)線為l,P是拋物線上一點,PA⊥l,A為垂足,若直線PF的傾斜角為120°,則|PF|等于( 。
A.2B.$\frac{8}{3}$C.3D.$\frac{10}{3}$

分析 設(shè)P(x,y),取l與x軸的交點B,在Rt△ABF中,∠AFB=30°,|BF|=4,則|AB|=|y|=$\frac{4}{\sqrt{3}}$,利用拋物線的方程求出P的橫坐標(biāo),利用拋物線的定義,求出|PF|.

解答 解:設(shè)P(x,y),取l與x軸的交點B,
在Rt△ABF中,∠AFB=30°,|BF|=4,則|AB|=|y|=$\frac{4}{\sqrt{3}}$,
∴8x=$\frac{16}{3}$,
∴x=$\frac{2}{3}$,
∴|PF|=2+$\frac{2}{3}$=$\frac{8}{3}$.
故選B.

點評 本題考查拋物線的方程與性質(zhì),考查拋物線的定義,確定P的坐標(biāo)是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知直線l:y=kx+2與橢圓E:x2+$\frac{{y}^{2}}{5}$=1交于A,B兩點,若三角形AOB的面積$\frac{\sqrt{5}}{2}$,求直線的斜率k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知全集U=R,集合A={x|x<-1或x≥3},B={x|2x-1≤3}.求:
(1)A∪B;(2)A∩(CUB);(3)(CUA)∪(CUB).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.把顏色分別為紅、黑、白的3個球隨機地分給甲、乙、丙3人,每人分得1個球.則事件“甲分得白球或乙分得白球”發(fā)生的概率為(  )
A.$\frac{2}{3}$B.$\frac{1}{6}$C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知圓C的參數(shù)方程為$\left\{\begin{array}{l}x=cosθ+1\\ y=sinθ\end{array}\right.$,(θ為參數(shù)),直線l的參數(shù)方程為$\left\{\begin{array}{l}x=t\\ y=-2\sqrt{3}+\sqrt{3}t\end{array}\right.$,(t為參數(shù)).
(1)求圓C的極坐標(biāo)方程;
(2)直線l與圓C交于A,B兩點,求線段AB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知$f(x)=\frac{{\sqrt{1-{x^2}}}}{|x+3|-3}$,則f (x)( 。
A.是偶函數(shù),而非奇函數(shù)B.既是奇函數(shù)又是偶函數(shù)
C.是奇函數(shù),而非偶函數(shù)D.是非奇非偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖所示,△ABD和△CBD是全等的等邊三角形,且邊長為2,AC=$\sqrt{6}$,F(xiàn)、G分別為AD、BC的中點.
(1)求證:平面ABD⊥平面CBD;
(2)求直線FG與平面ADC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知集合A={x|y=lg(1-2x)},B=[0,1),則A∩B=( 。
A.(-∞,$\frac{1}{2}$]B.[0,1)C.[0,$\frac{1}{2}$)D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.函數(shù)f(x)=$\sqrt{x\sqrt{x\sqrt{x}}}$的導(dǎo)數(shù)是( 。
A.$\frac{1}{{\root{8}{x}}}$(x>0)B.$\frac{7}{{8\root{8}{x}}}$(x>0)C.$\frac{1}{{8\root{8}{x^7}}}$(x>0)D.$\frac{-1}{{8\root{8}{x}}}$(x>0)

查看答案和解析>>

同步練習(xí)冊答案