【題目】設(shè)fx)=loga1+x+loga3x)(a0a≠1)且f1)=2

1)求a的值及fx)的定義域;

2)求fx)在區(qū)間[0,]上的最大值和最小值.

【答案】1a2,定義域?yàn)椋ī?/span>1,3);(2)最大值為f1)=2,最小值為f0)=log23

【解析】

1)根據(jù),代值計(jì)算即可求得,再根據(jù)真數(shù)大于零,求得函數(shù)定義域;

2)先求解的值域,再據(jù)此求函數(shù)的值域.

1)由題意知,,

解得﹣1x3;

fx)的定義域?yàn)椋ī?/span>1,3);

再由f1)=2得,

loga1+1+loga31)=2;

a2.

綜上所述:函數(shù)定義域?yàn)?/span>,.

2fx)=log21+x)(3x),

x[0,],

∴(1+x)(3x[3,4]

fx)在區(qū)間[0,]上的最大值為f1)=2;

fx)在區(qū)間[0,]上的最小值為f0)=log23

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓,橢圓的長(zhǎng)軸為短軸,且兩個(gè)橢圓的離心率相同,設(shè)O為坐標(biāo)原點(diǎn),點(diǎn)A、B分別在橢圓、上,若,則直線AB的斜率k為( .

A.1B.-1C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某健康社團(tuán)為調(diào)查居民的運(yùn)動(dòng)情況,統(tǒng)計(jì)了某小區(qū)100名居民平均每天的運(yùn)動(dòng)時(shí)長(zhǎng)(單位:小時(shí))并根據(jù)統(tǒng)計(jì)數(shù)據(jù)分為六個(gè)小組(所調(diào)查的居民平均每天運(yùn)動(dòng)時(shí)長(zhǎng)均在內(nèi)),得到的頻率分布直方圖如圖所示.

1)求出圖中的值,并估計(jì)這名居民平均每天運(yùn)動(dòng)時(shí)長(zhǎng)的平均值及中位數(shù)(同一組中的每個(gè)數(shù)據(jù)可用該組區(qū)間的中點(diǎn)值代替);

2)為了分析出該小區(qū)居民平均每天的運(yùn)動(dòng)量與職業(yè)、年齡等的關(guān)系,該社團(tuán)按小組用分層抽樣的方法抽出20名居民進(jìn)一步調(diào)查,試問(wèn)在時(shí)間段內(nèi)應(yīng)抽出多少人?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)三位數(shù),個(gè)位、十位、百位上的數(shù)字依次為xy,z,當(dāng)且僅當(dāng)yxyz時(shí),稱(chēng)這樣的數(shù)為凸數(shù)”(243),現(xiàn)從集合{1,2,3,4}中取出三個(gè)不相同的數(shù)組成一個(gè)三位數(shù),則這個(gè)三位數(shù)是凸數(shù)的概率為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD是棱長(zhǎng)為2的正方形,EAD的中點(diǎn),以CE為折痕把DEC折起,使點(diǎn)D到達(dá)點(diǎn)P的位置,且點(diǎn)P的射影O落在線段AC上.

1)求;

2)求幾何體PABCE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) 的一段圖像如圖所示.

(1)求此函數(shù)的解析式;

(2)求此函數(shù)在上的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線C經(jīng)過(guò)點(diǎn),其焦點(diǎn)為FM為拋物線上除了原點(diǎn)外的任一點(diǎn),過(guò)M的直線lx軸、y軸分別交于A,B兩點(diǎn).

求拋物線C的方程以及焦點(diǎn)坐標(biāo);

的面積相等,證明直線l與拋物線C相切.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系內(nèi),已知是以點(diǎn)為圓心的圓上的一點(diǎn),折疊該圓兩次使點(diǎn)分別與圓上不相同的兩點(diǎn)(異于點(diǎn))重合,兩次的折痕方程分別為,若圓上存在點(diǎn),使得,其中點(diǎn)、,則的取值范圍為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)

1)若處的切線與直線平行,求的值;

2)討論函數(shù)的單調(diào)區(qū)間;

3)若函數(shù)的圖象與軸交于A,B兩點(diǎn),線段AB中點(diǎn)的橫坐標(biāo)為,證明

查看答案和解析>>

同步練習(xí)冊(cè)答案