半徑為R的圓內(nèi)接正n邊形的面積為( 。
A、
1
2
R2sin
n
B、
n
2
R2sin
n
C、
1
2
R2cos
n
D、
n
2
R2sin
π
n
考點(diǎn):球內(nèi)接多面體
專題:計(jì)算題,空間位置關(guān)系與距離
分析:用R、n表示出圓的內(nèi)接正n邊形的邊長(zhǎng)及邊心距,再由三角形的面積公式求解即可.
解答: 解:半徑為R的圓的內(nèi)接正n邊形的邊長(zhǎng)為2Rsin
π
n

邊心距為Rcos
π
n
,
則正n邊形的面積為=n•
1
2
2Rsin
π
n
•Rcos
π
n
=
n
2
R2sin
n

故選:B.
點(diǎn)評(píng):本題考查的是正多邊形和圓,根據(jù)題意用R、n表示出圓的內(nèi)接正n邊形的邊長(zhǎng)及邊心距是解答此題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知i是虛數(shù)單位,a∈R,則“a=1”是“(a+i)2=2i”的( 。
A、充分必要條件
B、充分不必要條件
C、必要不充分條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)i是虛數(shù)單位,復(fù)數(shù)
a+i
2-i
是純虛數(shù),則實(shí)數(shù)a=( 。
A、-2
B、2
C、-
1
2
D、
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=1-xlnx的零點(diǎn)所在區(qū)間是(  )
A、(0,
1
2
B、(
1
2
,1)
C、(1,2)
D、(2,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

扇形的面積為6cm2,半徑為2cm,則扇形的圓心角是( 。
A、3
B、3π
C、
3
2
D、
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,sinAsinC>cosAcosC,則△ABC一定是( 。
A、銳角三角形B、直角三角形
C、鈍角三角形D、不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

交通管理部門為了解機(jī)動(dòng)車駕駛員(簡(jiǎn)稱駕駛員)對(duì)某新法規(guī)的知曉情況,對(duì)甲、乙、丙、丁四個(gè)社區(qū)做分層抽樣調(diào)查.假設(shè)四個(gè)社區(qū)駕駛員的總?cè)藬?shù)為N,其中甲社區(qū)有駕駛員96人.若在甲、乙、丙、丁四個(gè)社區(qū)抽取駕駛員的人數(shù)分別為12,22,26,44,則這四個(gè)社區(qū)駕駛員的總?cè)藬?shù)N為( 。
A、104B、808
C、832D、2014

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f1(x)=sinx+cosx,fn+1(x)是fn (x)的導(dǎo)函數(shù),即f2(x)=f′1(x),f3(x)=f′2(x),…,fn+1(x)=f′n(x),n∈N*,則f2012(x)=( 。
A、sinx+cosx
B、sinx-cosx
C、-sinx+cosx
D、-sinx-cosx

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在銳角△ABC中,BC=1,B=2A,則AC的取值范圍為( 。
A、(1,
2
B、(
2
,
3
C、(
3
,2)
D、(2,
5

查看答案和解析>>

同步練習(xí)冊(cè)答案