【題目】已知函數(shù)

1)求函數(shù)的單調(diào)區(qū)間;

2)若函數(shù)是自然對(duì)數(shù)的底數(shù))恰有一個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.

【答案】1)單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是;(2.

【解析】

(1)先根據(jù)題意求得函數(shù)的定義域,再對(duì)函數(shù)求導(dǎo),利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間即可;

(2)先將函數(shù)恰有一個(gè)零點(diǎn)等價(jià)轉(zhuǎn)化為方程上恰有一解,然后換元,構(gòu)造函數(shù),利用分類討論思想進(jìn)行求解,也可分離參數(shù),構(gòu)造新函數(shù),利用導(dǎo)數(shù)研究新函數(shù)的圖象,數(shù)形結(jié)合即可求解.

(1)由題意知,函數(shù)的定義域?yàn)?/span>,則,

當(dāng)時(shí),,函數(shù)單調(diào)遞增;

當(dāng)時(shí),,函數(shù)單調(diào)遞減,

所以函數(shù)的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是

(2)解法1、由函數(shù)恰有一個(gè)零點(diǎn),等價(jià)于方程上恰有一解,即方程上恰有一解,

,易知上單調(diào)遞增,

且當(dāng)時(shí),,當(dāng)時(shí),,所以

所以方程上恰有一解,

,則

①當(dāng)時(shí),,所以函數(shù)單調(diào)遞增,

又當(dāng)時(shí),,且,

所以當(dāng)時(shí),方程上恰有一解,滿足題意.

②當(dāng)時(shí),方程上恰有一解,滿足題意.

③當(dāng)時(shí),由,得,

當(dāng)時(shí),,單調(diào)遞增,

當(dāng)時(shí),,單調(diào)遞減.

又當(dāng)時(shí),,當(dāng)時(shí),,

所以當(dāng),即時(shí),方程上恰有一解.

綜上所述,實(shí)數(shù)的取值范圍為

解法2、 函數(shù)恰有一個(gè)零點(diǎn),等價(jià)于方程上恰有一解,即方程上恰有一解.

,易知上單調(diào)遞增,

且當(dāng)時(shí),,當(dāng)時(shí),,所以,

所以方程上恰有一解,

即方程上恰有一解.

,則,

所以函數(shù)上單調(diào)遞增,在上單調(diào)遞減.

又當(dāng)時(shí),,當(dāng)時(shí),,且當(dāng)時(shí),,

所以作出函數(shù)的大致圖象,如圖所示,

數(shù)形結(jié)合可知,

故實(shí)數(shù)的取值范圍為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知為圓上一點(diǎn),過點(diǎn)軸的垂線交軸于點(diǎn),點(diǎn)滿足

(1)求動(dòng)點(diǎn)的軌跡方程;

(2)設(shè)為直線上一點(diǎn),為坐標(biāo)原點(diǎn),且,求面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),以為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,點(diǎn)是曲線上的動(dòng)點(diǎn),點(diǎn)的延長(zhǎng)線上,且,點(diǎn)的軌跡為

(1)求直線及曲線的極坐標(biāo)方程;

(2)若射線與直線交于點(diǎn),與曲線交于點(diǎn)(與原點(diǎn)不重合),求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),且的最小值為

1)求實(shí)數(shù)的值及函數(shù)的單調(diào)遞減區(qū)間;

2)當(dāng)時(shí),若函數(shù)有且僅有一個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中e為自然對(duì)數(shù)的底數(shù).

1)若函數(shù)的圖象在點(diǎn)處的切線方程為,求實(shí)數(shù)a的值;

2)若函數(shù)2個(gè)不同的零點(diǎn)

①求實(shí)數(shù)a的取值范圍;

②求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面,,,上一點(diǎn),且.

1)求證:平面

2的中點(diǎn),若二面角的平面角的正切值為,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國法定勞動(dòng)年齡是周歲至退休年齡(退休年齡一般指男周歲,女干部身份周歲,女工人周歲).為更好了解我國勞動(dòng)年齡人口變化情況,有關(guān)專家統(tǒng)計(jì)了年我國勞動(dòng)年齡人口和周歲人口數(shù)量(含預(yù)測(cè)),得到下表:

其中年勞動(dòng)年齡人口是億人,則下列結(jié)論不正確的是(

A.年勞動(dòng)年齡人口比年減少了萬人以上

B.周歲人口數(shù)的平均數(shù)是

C.年,周歲人口數(shù)每年的減少率都小于同年勞動(dòng)人口每年的減少率

D.年這周歲人口數(shù)的方差小于這年勞動(dòng)人口數(shù)的方差

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)若函數(shù)有且只有一個(gè)零點(diǎn),求實(shí)數(shù)的值

2)若對(duì)任意恒成立,求實(shí)數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中e是自然對(duì)數(shù)的底數(shù)

1)若,求的最小值;

2)記fx)的圖象在處的切線的縱截距為,求的極值;

3)若2個(gè)零點(diǎn),求證:

查看答案和解析>>

同步練習(xí)冊(cè)答案