分析 (1)用三角形面積公式表示出S和向量的數量積公式,即可確定出sinA
(2)由sinB=sin(A+C),求出sinB的值,利用正弦定理求出b的值即可.
解答 解:(1)設△ABC的三邊長分別為a,b,c,由3$\overrightarrow{AB}$•$\overrightarrow{AC}$=2S.
得3bccosA=2×$\frac{1}{2}$bcsinA,得sinA=3cosA.
即sin2A=9cos2A=9(1-sin2A),所以$\frac{9}{10}$,
又A∈(0,π),所以sinA>0,
故sinA=$\frac{3\sqrt{10}}{10}$;
(2)由sinA=3cosA和sinA=$\frac{3\sqrt{10}}{10}$得cosA=$\frac{\sqrt{10}}{10}$,
又$\overrightarrow{AB}$$•\overrightarrow{AC}$=16,
所以bccosA=16,得bc=16$\sqrt{10}$ ①.
又C=$\frac{π}{4}$,
所以sinB=sin(A+C)=sinAcosC+cosAsinC=$\frac{2\sqrt{5}}{5}$.
在△ABC中,由正弦定理,得$\frac{sinB}$=$\frac{c}{sinC}$,得c=$\frac{\sqrt{10}}{4}$b ②.
聯(lián)立①②,解得b=8,即AC=8.
點評 此題考查了正弦定理,以及三角形面積公式,熟練掌握定理及公式是解本題的關鍵.
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | y=x | B. | y=-2x+3 | C. | y=-3x+4 | D. | y=x-2 |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | ($\frac{1}{5}$,+∞) | B. | [$\frac{1}{5}$,+∞) | C. | (1,+∞) | D. | [1,+∞) |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com