19.在△ABC中,內(nèi)角A、B、C所對(duì)的邊分別為a、b、c,acosB=bcosA,4S=2a2-c2,其中S是△ABC的面積,則C的大小為$\frac{π}{4}$.

分析 由正弦定理化acosB=bcosA,得出△ABC是等腰三角形,即a=b;由△ABC的面積S=$\frac{1}{2}$absinC,結(jié)合4S=2a2-c2,求出sinC=cosC,從而得出角C的值.

解答 解:△ABC中,acosB=bcosA,
∴sinAcosB=sinBcosA,
∴sinAcosB-cosAsinB=sin(A-B)=0,
∴A=B,∴a=b;
又△ABC的面積為S=$\frac{1}{2}$absinC,
且4S=2a2-c2,
∴2absinC=2a2-c2=a2+b2-c2,
∴sinC=$\frac{{a}^{2}{+b}^{2}{-c}^{2}}{2ab}$=cosC,
∴C=$\frac{π}{4}$.
故答案為:$\frac{π}{4}$.

點(diǎn)評(píng) 本題考查了正弦定理、余弦定理和三角形面積公式的應(yīng)用問(wèn)題,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知由一組樣本數(shù)據(jù)確定的回歸直線方程為$\hat y=1.5x+1$,且$\overline x=2$,發(fā)現(xiàn)有兩組數(shù)據(jù)(2.6,2.8)與(1.4,5.2)誤差較大,去掉這兩組數(shù)據(jù)后,重新求得回歸直線的斜率為1.4,那么當(dāng)x=6時(shí),$\hat y$的估計(jì)值為(  )
A.9.6B.10C.10.6D.9.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.設(shè)△ABC面積的大小為S,且3$\overrightarrow{AB}$•$\overrightarrow{AC}$=2S.
(1)求sinA的值;
(2)若C=$\frac{π}{4}$,$\overrightarrow{AB}$•$\overrightarrow{AC}$=16,求AC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.己知復(fù)數(shù)$\frac{2+i}{a-i}$(其中a∈R,i是虛數(shù)單位)是純虛數(shù),則a的值為( 。
A.2B.$\frac{1}{2}$C.-$\frac{1}{2}$D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.己知函數(shù)f(x)=a2+x2-xlna-b(a,b∈R,a>1),e自然對(duì)數(shù)的底數(shù).
(Ⅰ)當(dāng)a=e,b=4時(shí),求函數(shù)f(x)零點(diǎn)個(gè)數(shù)
(Ⅱ)若b=1,求f(x)在[-1,1]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.若復(fù)數(shù)z滿足iz=l+3i,其中i為虛數(shù)單位,則$\overline z$=( 。
A.-3+iB.-3-iC.3+iD.3-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.函數(shù)y=$\frac{1}{{\sqrt{{{log}_2}({3x-2})}}}$的定義域?yàn)閧x|x>1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.在△ABC中,BC=$\sqrt{6}$,AB=2,1+$\frac{tanA}{tanB}$=$\frac{2AB}{AC}$,則AC=( 。
A.$\sqrt{6}$-1B.1+$\sqrt{6}$C.$\sqrt{3}$-1D.1+$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知向量$\overrightarrow m=(\sqrt{3}sin\frac{x}{2},-1)$,向量$\overrightarrow n=(cos\frac{x}{2},-\frac{1}{2})$,函數(shù)$f(x)=(\overrightarrow m+\overrightarrow n)•\overrightarrow m$.
(1)求f(x)的單調(diào)減區(qū)間;
(2)將函數(shù)f(x)圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍(縱坐標(biāo)不變),再把得到的圖象向左平移$\frac{π}{3}$個(gè)單位長(zhǎng)度,得到y(tǒng)=g(x)的圖象,求函數(shù)y=g(x)的解析式及其圖象的對(duì)稱中心.

查看答案和解析>>

同步練習(xí)冊(cè)答案