已知是不全為的實(shí)數(shù),函數(shù),,方程有實(shí)根,且的實(shí)數(shù)根都是的根,反之,的實(shí)數(shù)根都是的根.
(1)求的值;(2)若,求的取值范圍.

(1),(2).

解析試題分析:(1)本小題中對(duì)已知條件的理解是一個(gè)關(guān)鍵點(diǎn),可設(shè)的根,因此有,又則有,從而對(duì)于函數(shù)而言,可得.
(2)本小題中因?yàn)橛?img src="http://thumb.zyjl.cn/pic5/tikupic/80/7/1wkg34.png" style="vertical-align:middle;" />,所以,又可知,所以的根為0和-1,對(duì)于實(shí)數(shù)以下分為正數(shù),負(fù)數(shù)與零三種情況進(jìn)行討論.
試題解析:(1)設(shè)的根,那么,則的根,則,所以
(2),所以,即的根為0和-1,
①當(dāng)時(shí),則這時(shí)的根為一切實(shí)數(shù),而,所以符合要求.
當(dāng)時(shí),因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/c3/5/9sgth2.png" style="vertical-align:middle;" />=0的根不可能為0和,所以必?zé)o實(shí)數(shù)根,
②當(dāng)時(shí),==,即函數(shù),恒成立,又,所以,即所以;③當(dāng)時(shí),==,即函數(shù),恒成立,又,所以,,而,舍去,綜上所述,所以.
考點(diǎn):函數(shù)的零點(diǎn)概念(方程的根),復(fù)合函數(shù)概念,函數(shù)值域問題,配方法,分類討論思想.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

函數(shù)的最小值是,在一個(gè)周期內(nèi)圖象最高點(diǎn)與最低點(diǎn)橫坐標(biāo)差是,又:圖象過點(diǎn),
求(1)函數(shù)解析式,
(2)函數(shù)的最大值、以及達(dá)到最大值時(shí)的集合;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),當(dāng)時(shí),恒有
(1)求證:是奇函數(shù);
(2)如果為正實(shí)數(shù),,并且,試求在區(qū)間[-2,6]上的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知是定義在上的奇函數(shù),且,若時(shí),有
(1)證明上是增函數(shù);
(2)解不等式
(3)若對(duì)恒成立,求實(shí)數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知為實(shí)數(shù),
(1)若,求 上的最大值和最小值;
(2)若上都是遞增的,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知
(1)判斷的奇偶性;
(2)討論的單調(diào)性;
(3)當(dāng)時(shí),恒成立,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=2x,x∈R.當(dāng)m取何值時(shí)方程|f(x)-2|=m有一個(gè)解??jī)蓚(gè)解?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

函數(shù)的定義域是              .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

函數(shù)的反函數(shù)       

查看答案和解析>>

同步練習(xí)冊(cè)答案