【題目】已知橢圓C: (a>b>0)過點( ,1),且焦距為2
(1)求橢圓C的方程;
(2)若直線l:y=k(x+1)(k>﹣2)與橢圓C相交于不同的兩點A、B,線段AB的中點M到直線2x+y+t=0的距離為 ,求t(t>2)的取值范圍.

【答案】
(1)解:由2c=2 ,c= ,則a2﹣b2=2,

將點( ,1)代入橢圓方程: ,解得:a2=4,b2=2,

∴橢圓的標準方程:


(2)解:A(x1,y1),B(x2,y2),M(x0,y0

,整理得:(2k2+1)x2+4k2x+2k2﹣4=0,

則x1+x2=﹣ ,則x0= =﹣ ,

y0=k(x0+1)= ,

由M到直線2x+y+t=0的距離 = ,

則丨 +t﹣2丨=3,

由k>﹣2及t>2,則t=5﹣ =5﹣

≥6 ,

∴5﹣ ≤t<5,即4﹣ ≤t<5,

∴t(t>2)的取值范圍[4﹣ ,5)


【解析】(1)由c= ,則a2﹣b2=2,將點代入橢圓方程,聯(lián)立即可求得a和b的值,即可求得橢圓方程;(2)將直線方程代入橢圓方程,利用韋達定理及中點坐標公式求得M點坐標,利用點到直線的距離公式,根據(jù)k及t的取值范圍,利用基本不等式的性質(zhì),即可求得t的取值范圍.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C1的方程為 + =1,雙曲線C2的左、右焦點分別是C1的左、右頂點,而以雙曲線C2的左、右頂點分別是橢圓C1的左、右焦點.
(1)求雙曲線C2的方程;
(2)記O為坐標原點,過點Q(0,2)的直線l與雙曲線C2相交于不同的兩點E、F,若△OEF的面積為2 ,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓方程為 +y2=1,圓C:(x﹣1)2+y2=r2
(Ⅰ)求橢圓上動點P與圓心C距離的最小值;
(Ⅱ)如圖,直線l與橢圓相交于A、B兩點,且與圓C相切于點M,若滿足M為線段AB中點的直線l有4條,求半徑r的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】根據(jù)微信同程旅游的調(diào)查統(tǒng)計顯示,參與網(wǎng)上購票的1000位購票者的年齡(單位:歲)情況如圖所示.
(1)已知中間三個年齡段的網(wǎng)上購票人數(shù)成等差數(shù)列,求a,b的值;
(2)為鼓勵大家網(wǎng)上購票,該平臺常采用購票就發(fā)放酒店入住代金券的方法進行促銷,具體做法如下:年齡在[30,50)歲的每人發(fā)放20元,其余年齡段的每人發(fā)放50元,先按發(fā)放代金券的金額采用分層抽樣的方式從參與調(diào)查的1000位網(wǎng)上購票者中抽取5人,并在這5人中隨機抽取3人進行回訪調(diào)查,求此3人獲得代金券的金額總和為90元的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= ,若f(x)的兩個零點分別為x1 , x2 , 則|x1﹣x2|=(
A.
B.1+
C.2
D. +ln2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= mcos2x+(m﹣2)sinx,其中1≤m≤2,若函數(shù)f(x)的最大值記為g(m),則g(m)的最小值為(
A.﹣
B.1
C.3﹣
D. ﹣1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點E(﹣2,0),點P時圓F:(x﹣2)2+y2=36上任意一點,線段EP的垂直平分線交FP于點M,點M的軌跡記為曲線C.
(Ⅰ)求曲線C的方程;
(Ⅱ)過F的直線交曲線C于不同的A、B兩點,交y軸于點N,已知 =m =n ,求m+n的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】《九章算術(shù)》是我國古代內(nèi)容極為豐富的數(shù)學名著,系統(tǒng)地總結(jié)了戰(zhàn)國、秦、漢時期的數(shù)學成就.書中將底面為長方形且有一條側(cè)棱與底面垂直的四棱錐稱之為“陽馬”,若某“陽馬”的三視圖如圖所示(單位:cm),則該陽馬的外接球的體積為(
A.100πcm3
B.
C.400πcm3
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】用數(shù)學歸納法證明1+2+3+…+n2= ,則當n=k+1時左端應在n=k的基礎上加上(
A.k2+1
B.(k+1)2
C.
D.(k2+1)+(k2+2)+(k2+3)+…+(k+1)2

查看答案和解析>>

同步練習冊答案