精英家教網 > 高中數學 > 題目詳情

【題目】已知△ABC中,AB=AC,D為△ABC外接圓劣弧 上的點(不與點A,C重合),延長BD至E,延長AD交BC的延長線于F.
(1)求證:∠CDF=∠EDF;
(2)求證:ABACDF=ADFCFB.

【答案】
(1)證明:∵A,B,C,D 四點共圓,∴∠ABC=∠CDF

又AB=AC∴∠ABC=∠ACB,

且∠ADB=∠ACB,∴∠ADB=∠CDF,

對頂角∠EDF=∠ADB,故∠EDF=∠CDF;


(2)證明:由(I)得∠ADB=∠ABF,

∵∠BAD=∠FAB,

∴△BAD∽△FAB,

= ,

∴AB2=ADAF,

∵AB=AC,

∴ABAC=ADAF,

∴ABACDF=ADAFDF,

根據割線定理DFAF=FCFB,

∴ABACDF=ADFCFB.


【解析】(I)根據A,B,C,D 四點共圓,可得∠ABC=∠CDF,AB=AC可得∠ABC=∠ACB,從而得解.(II)證明△BAD∽△FAB,可得AB2=ADAF,因為AB=AC,所以ABAC=ADAF,再根據割線定理即可得到結論.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】傳統(tǒng)文化就是文明演化而匯集成的一種反映民族特質和風貌的民族文化,是民族歷史上各種思想文化、觀念形態(tài)的總體表征.教育部考試中心確定了2017年普通高考部分學科更注重傳統(tǒng)文化考核.某校為了了解高二年級中國數學傳統(tǒng)文化選修課的教學效果,進行了一次階段檢測,并從中隨機抽取80名同學的成績,然后就其成績分為A、B、C、D、E五個等級進行數據統(tǒng)計如下:

成績

人數

A

9

B

12

C

31

D

22

E

6

根據以上抽樣調查數據,視頻率為概率.
(1)若該校高二年級共有1000名學生,試估算該校高二年級學生獲得成績?yōu)锽的人數;
(2)若等級A、B、C、D、E分別對應100分、80分、60分、40分、20分,學校要求“平均分達60分以上”為“教學達標”,請問該校高二年級此階段教學是否達標?
(3)為更深入了解教學情況,將成績等級為A、B的學生中,按分層抽樣抽取7人,再從中任意抽取3名,求抽到成績?yōu)锳的人數X的分布列與數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列 {an} 的前 n 項和為Sn , S1=6,S2=4,Sn>0且S2n , S2n1 , S2n+2成等比數列,S2n1 , S2n+2 , S2n+1成等差數列,則a2016等于(
A.﹣1009
B.﹣1008
C.﹣1007
D.﹣1006

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=x(a+lnx)有極小值﹣e2 . (Ⅰ)求實數a的值;
(Ⅱ)若k∈Z,且 對任意x>1恒成立,求k的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】△ABC中,角A,B,C所對邊分別是a、b、c,且cosA=
(1)求sin2 +cos2A的值;
(2)若a= ,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數f(x)=2cos2x+sin2x+a(a∈R).
(1)求函數f(x)的最小正周期和單調遞增區(qū)間;
(2)當 時,f(x)的最大值為2,求a的值,并求出y=f(x)(x∈R)的對稱軸方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】若函數 ,為了得到函數g(x)=sin2x的圖象,則只需將f(x)的圖象(
A.向右平移 個長度單位
B.向右平移 個長度單位
C.向左平移 個長度單位
D.向左平移 個長度單位

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設甲、乙兩人每次射擊命中目標的概率分別為 ,且各次射擊相互獨立,若按甲、乙、甲、乙…的次序輪流射擊,直到有一人擊中目標就停止射擊,則停止射擊時,甲射擊了兩次的概率是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數 有且僅有四個不同的點關于直線y=1的對稱點在直線kx+y﹣1=0上,則實數k的取值范圍為(
A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案