A. | 函數(shù)f(-x)的最小正周期為π | |
B. | 函數(shù)f(-x)圖象的對稱軸方程為x=$\frac{π}{12}$+$\frac{kπ}{2}$(k∈Z) | |
C. | 函數(shù)f(-x)圖象的對稱中心為($\frac{π}{6}$+$\frac{kπ}{2}$,0)(k∈Z) | |
D. | 函數(shù)f(-x)的單調(diào)遞減區(qū)間為[kπ+$\frac{π}{12}$,kπ+$\frac{7π}{12}$](k∈Z) |
分析 由題意,ω=2,函數(shù)f(x)=Asin(ωx+φ)的周期為π,φ=$\frac{2π}{3}$,f(-x)=Asin(-2x+$\frac{2π}{3}$),再進(jìn)行驗(yàn)證,即可得出結(jié)論.
解答 解:由題意,ω=2,函數(shù)f(x)=Asin(ωx+φ)的周期為π,
φ=$\frac{2π}{3}$,f(-x)=Asin(-2x+$\frac{2π}{3}$),
x=$\frac{π}{6}$+$\frac{kπ}{2}$,-2x+$\frac{2π}{3}$=kπ+$\frac{π}{3}$,f(-x)=Asin(-2x+$\frac{2π}{3}$)≠0,
故選C.
點(diǎn)評 本題考查三角函數(shù)的圖象與性質(zhì),考查學(xué)生的計(jì)算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=±$\frac{1}{4}$x | B. | y=±$\frac{1}{3}$x | C. | y=±$\frac{1}{2}$x | D. | y=±$\frac{\sqrt{3}}{3}$x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | mn>0 | B. | m>1,且n>1 | C. | m>0,且n<0 | D. | m>0,且n>0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{\sqrt{3}}{2}$ | B. | -$\frac{1}{2}$ | C. | $\frac{1}{2}$ | D. | $\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | -$\frac{1}{2}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | -$\frac{\sqrt{2}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com