【題目】已知函數(shù)f(x)=ln(x+a)﹣x,a∈R.
(1)當(dāng)a=﹣1時(shí),求f(x)的單調(diào)區(qū)間;
(2)若x≥1時(shí),不等式ef(x)+ x2>1恒成立,求實(shí)數(shù)a的取值范圍.
【答案】
(1)解:當(dāng)a=﹣1時(shí),f(x)=ln(x﹣1)﹣x,x>1,
f′(x)= ﹣1= ,
當(dāng)1<x<2時(shí),f′(x)>0,f(x)遞增,
當(dāng)x>2時(shí),f′(x)<0,f(x)遞減,
故f(x)在(1,2)遞增,在(2,+∞)遞減
(2)解:由題意得:x≥1時(shí),x+a>0恒成立,故a>﹣1,①,
不等式ef(x)+ x2>1恒成立,
即 x2+ ﹣1>0對(duì)任意的x≥1恒成立,
設(shè)g(x)= x2+ ﹣1,x≥1,
g′(x)= ,
a≤0時(shí),g(2)=a(2+ )﹣1+ <0,不合題意,
a>0時(shí),要使x≥1時(shí),不等式ef(x)+ x2>1恒成立,
只需g(1)=a( + )﹣1+ >0,即a> ,
a> 時(shí),aexx﹣x+1﹣a=a(exx﹣1)+1﹣x> (exx﹣1)+1﹣x,
設(shè)h(x)= (exx﹣1)+1﹣x,x≥1,
h′(x)= exx+ ex﹣1,x≥1,
顯然h′(x)在(1,+∞)遞增,∴h′(x)>h′(1)= >0,
∴h(x)在(1,+∞)遞增,h(x)>h(1)= >0,
即aexx﹣x+1﹣a>0,②,
由①②得:a> 時(shí),滿足題意
【解析】(1)求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間即可;(2)問(wèn)題轉(zhuǎn)化為 x2+ ﹣1>0對(duì)任意的x≥1恒成立,設(shè)g(x)= x2+ ﹣1,x≥1,通過(guò)求導(dǎo)得到g(x)的單調(diào)性,從而求出a的范圍即可.
【考點(diǎn)精析】利用利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和函數(shù)的最大(小)值與導(dǎo)數(shù)對(duì)題目進(jìn)行判斷即可得到答案,需要熟知一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個(gè)區(qū)間內(nèi),(1)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞減;求函數(shù)在上的最大值與最小值的步驟:(1)求函數(shù)在內(nèi)的極值;(2)將函數(shù)的各極值與端點(diǎn)處的函數(shù)值,比較,其中最大的是一個(gè)最大值,最小的是最小值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)探究函數(shù)在上的單調(diào)性;
(2)若關(guān)于的不等式在上恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為響應(yīng)“精確扶貧”號(hào)召,某企業(yè)計(jì)劃每年用不超過(guò)100萬(wàn)元的資金購(gòu)買單價(jià)分別為1500元/箱和3000元/箱的A、B兩種藥品捐獻(xiàn)給貧困地區(qū)某醫(yī)院,其中A藥品至少100箱,B藥品箱數(shù)不少于A藥品箱數(shù).則該企業(yè)捐獻(xiàn)給醫(yī)院的兩種藥品總箱數(shù)最多可為( )
A.200
B.350
C.400
D.500
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC在內(nèi)角A、B、C的對(duì)邊分別為a,b,c,已知a=bcosC+csinB.
(Ⅰ)求B;
(Ⅱ)若b=2,求△ABC面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù).
(Ⅰ)若的最大值為,求實(shí)數(shù)的值;
(Ⅱ)對(duì)于任意的,總有.求實(shí)數(shù)的取值范圍;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在棱長(zhǎng)為a的正方體ABCD﹣A1B1C1D1中,P為A1D1的中點(diǎn),Q為A1B1上任意一點(diǎn),E,F(xiàn)為CD上任意兩點(diǎn),且EF的長(zhǎng)為定值,則下面的四個(gè)值中不為定值的是( )
A.點(diǎn)Q到平面PEF的距離
B.直線PE與平面QEF所成的角
C.三棱錐P﹣QEF的體積
D.二面角P﹣EF﹣Q的大小
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】我國(guó)是世界上嚴(yán)重缺水的國(guó)家,某市政府為了鼓勵(lì)居民節(jié)約用水,計(jì)劃調(diào)整居民生活用水收費(fèi)方案,擬確定一個(gè)合理的月用水量標(biāo)準(zhǔn)(噸)、一位居民的月用水量不超過(guò)的部分按平價(jià)收費(fèi),超出的部分按議價(jià)收費(fèi).為了了解居民用水情況,通過(guò)抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照[0,0.5),[0.5,1),…,[4,4.5]分成9組,制成了如圖所示的頻率分布直方圖.
(Ⅰ)求直方圖中a的值;
(Ⅱ)設(shè)該市有30萬(wàn)居民,估計(jì)全市居民中月均用水量不低于3噸的人數(shù),并說(shuō)明理由;
(Ⅲ)若該市政府希望使85%的居民每月的用水量不超過(guò)標(biāo)準(zhǔn)(噸),估計(jì)的值,并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,
(1)求的單調(diào)遞增區(qū)間;
(2)若函數(shù)在上只有一個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于函數(shù)f(x)=atanx+bx3+cx(a、b、c∈R),選取a、b、c的一組值計(jì)算f(1)、f(﹣1),所得出的正確結(jié)果可能是( )
A.2和1
B.2和0
C.2和﹣1
D.2和﹣2
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com