分析 (I)由橢圓C的焦距為4,及等邊三角形的性質(zhì)和a2=b2+c2,求得a,b,即可求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)M(-3,m),P(x1,y1),Q(x2,y2),PQ的中點為N(x0,y0),kMF=-m,設(shè)直線PQ的方程為x=my-2,代入橢圓方程,運用韋達(dá)定理和中點坐標(biāo)公式,結(jié)合三點共線的方法:斜率相等,即可得證.
解答 解:(Ⅰ)由題意可得c=2,
短軸的兩個端點與長軸的一個端點構(gòu)成正三角形,可得
a=$\frac{\sqrt{3}}{2}$•2b,即有a=$\sqrt{3}$b,a2-b2=4,
解得a=$\sqrt{6}$,b=$\sqrt{2}$,
則橢圓方程為$\frac{{x}^{2}}{6}$+$\frac{{y}^{2}}{2}$=1;
(Ⅱ)證明:設(shè)M(-3,m),P(x1,y1),Q(x2,y2),
PQ的中點為N(x0,y0),kMF=-m,
由F(-2,0),可設(shè)直線PQ的方程為x=my-2,
代入橢圓方程可得(m2+3)y2-4my-2=0,
即有y1+y2=$\frac{4m}{3+{m}^{2}}$,y1y2=-$\frac{2}{3+{m}^{2}}$,
于是N(-$\frac{6}{3+{m}^{2}}$,$\frac{2m}{3+{m}^{2}}$),
則直線ON的斜率kON=-$\frac{m}{3}$,
又kOM=-$\frac{m}{3}$,
可得kOM=kON,
則O,N,M三點共線,即有OM經(jīng)過線段PQ的中點.
點評 本題考查橢圓的方程和性質(zhì),主要考查橢圓方程的運用,注意聯(lián)立直線方程,運用韋達(dá)定理和中點坐標(biāo)公式,考查運算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 45 | B. | 180 | C. | -180 | D. | 720 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 7 | B. | 6 | C. | $\frac{17}{3}$ | D. | 8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{9}{2}$ | B. | 4 | C. | 2 | D. | 0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com