橢圓c:(a>b>0)的離心率為,過其右焦點F與長軸垂直的弦長為1,
(1)求橢圓C的方程;
(2)設(shè)橢圓C的左右頂點分別為A,B,點P是直線x=1上的動點,直線PA與橢圓的另一個交點為M,直線PB與橢圓的另一個交點為N,求證:直線MN經(jīng)過一定點.

(1);(2)證明詳見解析

解析試題分析:
(1)由已知可得=1,解出a,b即可.
(2)設(shè)P(1,t),則直線,聯(lián)立直線PA方程和橢圓方程可得,同理得到,由橢圓的對稱性可知這樣的定點在軸,不妨設(shè)這個定點為Q,由,求得m的存在即可.
試題解析:(1)依題意
過焦點與長軸垂直的直線x=c與橢圓
聯(lián)立解答弦長為=1,所以橢圓的方程
(2)設(shè)P(1,,直線,聯(lián)立得:
,可知所以,


同理得到由橢圓的對稱性可知這樣的定點在軸,
不妨設(shè)這個定點為Q,又
,
,.     12分
考點:1.橢圓方程的性質(zhì);2.點共線的證法.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的中心在原點,焦點在軸上,橢圓上的點到焦點的最小距離為,離心率.
(1)求橢圓的方程;
(2)若直線、兩點,點,問是否存在,使?若存在求出的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,已知平面內(nèi)一動點到兩個定點的距離之和為,線段的長為.

(1)求動點的軌跡;
(2)當(dāng)時,過點作直線與軌跡交于、兩點,且點在線段的上方,線段的垂直平分線為
①求的面積的最大值;
②軌跡上是否存在除、外的兩點關(guān)于直線對稱,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓)的右焦點為,且橢圓過點
(1)求橢圓的方程;
(2)設(shè)斜率為的直線與橢圓交于不同兩點、,以線段為底邊作等腰三角形,其中頂點的坐標(biāo)為,求△的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知拋物線,直線是拋物線的焦點。

(1)在拋物線上求一點,使點到直線的距離最。
(2)如圖,過點作直線交拋物線于A、B兩點.
①若直線AB的傾斜角為,求弦AB的長度;
②若直線AO、BO分別交直線兩點,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(理)已知點是平面直角坐標(biāo)系上的一個動點,點到直線的距離等于點到點的距離的2倍.記動點的軌跡為曲線.
(1)求曲線的方程;
(2)斜率為的直線與曲線交于兩個不同點,若直線不過點,設(shè)直線的斜率分別為,求的數(shù)值;
(3)試問:是否存在一個定圓,與以動點為圓心,以為半徑的圓相內(nèi)切?若存在,求出這個定圓的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,

已知橢圓E:的離心率為,過左焦點且斜率為的直線交
橢圓E于A,B兩點,線段AB的中點為M,直線交橢圓E于C,D兩點.
(1)求橢圓E的方程;
(2)求證:點M在直線上;
(3)是否存在實數(shù),使得四邊形AOBC為平行四邊形?若存在求出的值,若不存在說明理
由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的焦點在軸上,離心率為,對稱軸為坐標(biāo)軸,且經(jīng)過點
(1)求橢圓的方程;
(2)直線與橢圓相交于、兩點, 為原點,在、上分別存在異于點的點、,使得在以為直徑的圓外,求直線斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,動點與兩定點、構(gòu)成,且,設(shè)動點的軌跡為

(1)求軌跡的方程;
(2)設(shè)直線軸相交于點,與軌跡相交于點,且,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案