(理)已知點(diǎn)是平面直角坐標(biāo)系上的一個(gè)動(dòng)點(diǎn),點(diǎn)到直線(xiàn)的距離等于點(diǎn)到點(diǎn)的距離的2倍.記動(dòng)點(diǎn)的軌跡為曲線(xiàn).
(1)求曲線(xiàn)的方程;
(2)斜率為的直線(xiàn)與曲線(xiàn)交于兩個(gè)不同點(diǎn),若直線(xiàn)不過(guò)點(diǎn),設(shè)直線(xiàn)的斜率分別為,求的數(shù)值;
(3)試問(wèn):是否存在一個(gè)定圓,與以動(dòng)點(diǎn)為圓心,以為半徑的圓相內(nèi)切?若存在,求出這個(gè)定圓的方程;若不存在,說(shuō)明理由.

(1);(2)0;(3)存在,定圓的方程為:.

解析試題分析:(1)本題是求方程問(wèn)題,由于沒(méi)有告訴我們是什么曲線(xiàn),因此我們可根據(jù)已知條件采取直接法求方程,由已知可得,然后化簡(jiǎn)即可;(2)這是直線(xiàn)與圓錐曲線(xiàn)相交問(wèn)題,解題方法是設(shè)直線(xiàn)方程為(注意,知道為什么嗎?),與曲線(xiàn)方程聯(lián)立方程組,并消去得到關(guān)于的二次方程,如果設(shè),則可得(用表示),而
變形后表示成的式子,再把剛才的表達(dá)式代入計(jì)算應(yīng)該就能得到結(jié)論;(3)假設(shè)存在這個(gè)定圓與動(dòng)圓內(nèi)切,則圓心距為兩圓半徑之差,從而與兩圓中的某個(gè)圓的半徑之和或差為定值(定圓的半徑),由于點(diǎn)是橢圓的右焦點(diǎn),這時(shí)聯(lián)想橢圓的定義,若是橢圓的左焦點(diǎn),則就有是常數(shù),故定圓是以為圓心,4為半徑的圓.
試題解析:(1)由題知,有.
化簡(jiǎn),得曲線(xiàn)的方程:
(2)∵直線(xiàn)的斜率為,且不過(guò)點(diǎn),
∴可設(shè)直線(xiàn)
聯(lián)立方程組
又交點(diǎn)為,


(3)答:一定存在滿(mǎn)足題意的定圓.
理由:∵動(dòng)圓與定圓相內(nèi)切,
∴兩圓的圓心之間距離與其中一個(gè)圓的半徑之和或差必為定值.
恰好是曲線(xiàn)(橢圓)的右焦點(diǎn),且是曲線(xiàn)上的動(dòng)點(diǎn),
記曲線(xiàn)的左焦點(diǎn)為,聯(lián)想橢圓軌跡定義,有,
∴若定圓的圓心與點(diǎn)重合,定圓的半徑為4時(shí),則定圓滿(mǎn)足題意.
∴定圓的方程為:.
考點(diǎn):(1)求曲線(xiàn)方程;(2)直線(xiàn)與橢圓相交與定值問(wèn)題;(3)兩圓內(nèi)切與橢圓的定義.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓,過(guò)點(diǎn)且離心率為.

(1)求橢圓的方程;
(2)已知是橢圓的左右頂點(diǎn),動(dòng)點(diǎn)M滿(mǎn)足,連接AM交橢圓于點(diǎn)P,在x軸上是否存在異于A、B的定點(diǎn)Q,使得直線(xiàn)BP和直線(xiàn)MQ垂直.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓C:=1的離心率為,左焦點(diǎn)為F(-1,0),
(1)設(shè)A,B分別為橢圓的左、右頂點(diǎn),過(guò)點(diǎn)F且斜率為k的直線(xiàn)L與橢圓C交于M,N兩點(diǎn),若,求直線(xiàn)L的方程;
(2)橢圓C上是否存在三點(diǎn)P,E,G,使得SOPE=SOPG=SOEG?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

橢圓c:(a>b>0)的離心率為,過(guò)其右焦點(diǎn)F與長(zhǎng)軸垂直的弦長(zhǎng)為1,
(1)求橢圓C的方程;
(2)設(shè)橢圓C的左右頂點(diǎn)分別為A,B,點(diǎn)P是直線(xiàn)x=1上的動(dòng)點(diǎn),直線(xiàn)PA與橢圓的另一個(gè)交點(diǎn)為M,直線(xiàn)PB與橢圓的另一個(gè)交點(diǎn)為N,求證:直線(xiàn)MN經(jīng)過(guò)一定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,橢圓的中心為原點(diǎn),長(zhǎng)軸在軸上,離心率,又橢圓上的任一點(diǎn)到橢圓的兩焦點(diǎn)的距離之和為.

(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若平行于軸的直線(xiàn)與橢圓相交于不同的兩點(diǎn)、,過(guò)、兩點(diǎn)作圓心為的圓,使橢圓上的其余點(diǎn)均在圓外.求的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知拋物線(xiàn)的焦點(diǎn)為,點(diǎn)為拋物線(xiàn)上的一點(diǎn),其縱坐標(biāo)為,.
(1)求拋物線(xiàn)的方程;
(2)設(shè)為拋物線(xiàn)上不同于的兩點(diǎn),且,過(guò)兩點(diǎn)分別作拋物線(xiàn)的切線(xiàn),記兩切線(xiàn)的交點(diǎn)為,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓的離心率,長(zhǎng)軸的左右端點(diǎn)分別為,.
(1)求橢圓的方程;
(2)設(shè)動(dòng)直線(xiàn)與曲線(xiàn)有且只有一個(gè)公共點(diǎn),且與直線(xiàn)相交于點(diǎn).
求證:以為直徑的圓過(guò)定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,圓與直線(xiàn)相切于點(diǎn),與正半軸交于點(diǎn),與直線(xiàn)在第一象限的交點(diǎn)為.點(diǎn)為圓上任一點(diǎn),且滿(mǎn)足,動(dòng)點(diǎn)的軌跡記為曲線(xiàn)

(1)求圓的方程及曲線(xiàn)的方程;
(2)若兩條直線(xiàn)分別交曲線(xiàn)于點(diǎn)、、,求四邊形面積的最大值,并求此時(shí)的的值.
(3)證明:曲線(xiàn)為橢圓,并求橢圓的焦點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在平面直角坐標(biāo)系中,已知,,是橢圓上不同的三點(diǎn),,在第三象限,線(xiàn)段的中點(diǎn)在直線(xiàn)上.

(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)求點(diǎn)C的坐標(biāo);
(3)設(shè)動(dòng)點(diǎn)在橢圓上(異于點(diǎn),,)且直線(xiàn)PBPC分別交直線(xiàn)OA,兩點(diǎn),證明為定值并求出該定值.

查看答案和解析>>

同步練習(xí)冊(cè)答案