18.設(shè)$f(x)=\sqrt{3}sinωx-cosωx(ω>0)$的最小正周期為π,則f(x)的一個(gè)單調(diào)遞減區(qū)間是( 。
A.$(-\frac{π}{2},0)$B.$(-\frac{π}{6},\frac{π}{3})$C.$(\frac{π}{3},\frac{5π}{6})$D.$(\frac{π}{2},π)$

分析 利用輔助角公式基本公式將函數(shù)化為y=Asin(ωx+φ)的形式,根據(jù)函數(shù)的最小正周期求解ω,將內(nèi)層函數(shù)看作整體,放到正弦函數(shù)的減區(qū)間上,解不等式得函數(shù)的單調(diào)遞減區(qū)間;

解答 解:函數(shù)$f(x)=\sqrt{3}sinωx-cosωx(ω>0)$
化解可得:f(x)=2sin(ωx-$\frac{π}{6}$)
∵最小正周期為π,即T=$\frac{2π}{ω}=π$,
∴ω=2.
則f(x)=2sin(2x-$\frac{π}{6}$)
由$\frac{π}{2}≤2x-\frac{π}{6}≤\frac{3π}{2}$可得$\frac{π}{3}≤x≤\frac{5π}{6}$.
∴f(x)的一個(gè)單調(diào)遞減區(qū)間($\frac{π}{3}$,$\frac{5π}{6}$).
故選C.

點(diǎn)評(píng) 本題主要考查對(duì)三角函數(shù)的化簡(jiǎn)能力和三角函數(shù)的圖象和性質(zhì)的運(yùn)用,利用根據(jù)周期求解出解析式是解決本題的關(guān)鍵.屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.在△ABC中,角A,B,C所對(duì)的邊為a,b,c.已知c2=a2+b2-4bccosC,且A-C=$\frac{π}{2}$.
(Ⅰ)求cosC的值;
(Ⅱ)求cos(B+$\frac{π}{3}$)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知函數(shù)f(x)=xm-$\frac{4}{x}$,且f(4)=3.
(1)求m的值;   
(2)求f(x)的奇偶性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知實(shí)數(shù)x,y滿(mǎn)足約束條件$\left\{\begin{array}{l}{2x-y-1≤0}\\{x-y+1≥0}\\{x≥0,y≥0}\end{array}\right.$,則z=2x+3y點(diǎn)的最大值是13.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.有以下幾種說(shuō)法:(l1、l2不重合)
①若直線(xiàn)l1,l2都有斜率且斜率相等,則l1∥l2; 
 ②若直線(xiàn)l1⊥l2,則它們的斜率互為負(fù)倒數(shù);   
③兩條直線(xiàn)的傾斜角相等,則這兩條直線(xiàn)平行;  
④只有斜率相等的兩條直線(xiàn)才一定平行.   
以上說(shuō)法中正確的個(gè)數(shù)是( 。
A.1B.2C.3D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.設(shè)全集U=R,集合A={y|y=x2+1},B={x|x≤-1或x≥3},則A∩(∁UB)=( 。
A.{x|x≤-1}B.{x|x≤1}C.{x|-1<x≤1}D.{x|1≤x<3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知A={x||3x-4|>2},$B=\left\{{\left.x\right|\frac{1}{{{x^2}-x-2}}>0}\right\}$,C={x|(x-a)(x-a-1)≥0},p:x∈∁RA,q:x∈∁RB,r:x∈C
(1)p是q的什么條件?
(2)若r是p的必要非充分條件,試求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.設(shè){an}是遞增等差數(shù)列,前三項(xiàng)的和為12,前三項(xiàng)的積為48,則它的首項(xiàng)是2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知x,y滿(mǎn)足不等式組$\left\{\begin{array}{l}y-1≥0\\ x-y+2≥0\\ x+4y-8≤0\end{array}\right.$則目標(biāo)函數(shù)z=2x+y的最大值為9.

查看答案和解析>>

同步練習(xí)冊(cè)答案