18.在三棱錐V-ABC中,VA=VB,CA=CB.求證:AB⊥VC

分析 取AB中點(diǎn)M,連結(jié)VM,CM,推導(dǎo)出VM⊥AB,CM⊥AB,從而AB⊥平面VMC,由此能證明AB⊥VC.

解答 解:取AB中點(diǎn)M,連結(jié)VM,CM,
∵VA=VB,
∴△VAB為等腰三角形,∴VM⊥AB,
∵CA=CB,∴△ACB是等腰三角形,
∴CM⊥AB,
又VM∩CM=M,∴AB⊥平面VMC,
又VC?平面VMC,
∴AB⊥VC.

點(diǎn)評(píng) 本題考查線線垂直的證明,考查推理論證能力、運(yùn)算求解能力、空間思維能力、空間想象能力,考查轉(zhuǎn)化化歸思想、數(shù)形結(jié)合思想,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知3sin2α-2sinα+2sin2β=0,試求sin2α+sin2β的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.化簡(jiǎn)sin(x+y)sinx+cos(x+y)cosx等于( 。
A.cos(2x+y)B.cosyC.sin(2x+y)D.siny

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.化簡(jiǎn)sin690°的值是( 。
A.0.5B.-0.5C.$\frac{\sqrt{3}}{2}$D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.若△ABC的三個(gè)內(nèi)角A,B,C滿足cos2A-cos2B=2sin2C,試判斷△ABC的形狀.
(提示:如果需要,也可以直接利用19題閱讀材料及結(jié)論)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.對(duì)$?x∈(\;0\;,\;\frac{1}{3}\;)$,23x≤logax+1恒成立,則實(shí)數(shù)a的取值范圍是( 。
A.$(\;0\;,\;\frac{2}{3}\;)$B.$(\;0\;,\;\frac{1}{2}\;]$C.$[\;\frac{1}{3}\;,\;1\;)$D.$[\;\frac{1}{2}\;,\;1\;)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知數(shù)列{an}的前n項(xiàng)和為Sn,且${S_n}=2{a_n}-2(n∈{N^*})$.
(1)求數(shù)列{an}的通項(xiàng)an
(2)設(shè)cn=(n+1)an,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知三條不重合的直線m,n,l 和兩個(gè)不重合的平面 α,β 下列命題正確的是( 。
A.若m∥n,n?α,則 m∥αB.若α⊥β,α∩β=m,m⊥n,則 n⊥α
C.若l⊥n,m⊥n,則 l∥mD.若l⊥α,m⊥β,且 l⊥m,則 α⊥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知函數(shù)f(x)=|x-2|+|2x+1|.
(Ⅰ)解不等式f(x)≥7;
(Ⅱ)若關(guān)于x的不等式f(x)+|x-2|>a恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案