【題目】如圖,已知橢圓C1 +y2=1,雙曲線C2 =1(a>0,b>0),若以C1的長軸為直徑的圓與C2的一條漸近線交于A,B兩點,且C1與該漸近線的兩交點將線段AB三等分,則C2的離心率為( )

A.9
B.5
C.
D.3

【答案】D
【解析】解:由已知,|OA|=a= ,

設OA所在漸近線的方程為y=kx(k>0),

∴A點坐標可表示為A(x0,kx0)(x0>0)

= ,即A( , ),

∴AB的一個三分點坐標為( , ),

該點在橢圓C1上,∴ ,即 =1,得k=2 ,

=2 ,∴c= =3a,

∴離心率e=

故選:D.

【考點精析】關(guān)于本題考查的橢圓的標準方程,需要了解橢圓標準方程焦點在x軸:,焦點在y軸:才能得出正確答案.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),

(Ⅰ)求函數(shù)的最小正周期和單調(diào)遞增區(qū)間;

(Ⅱ)當時,方程恰有兩個不同的實數(shù)根,求實數(shù)的取值范圍;

(Ⅲ)將函數(shù)的圖象向右平移)個單位后所得函數(shù)的圖象關(guān)于原點中心對稱,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某商場銷售某種商品的經(jīng)驗表明,該商品每日的銷售量y(單位:千克)與銷售價格x(單位:元/千克)滿足關(guān)系式:y= +10(x﹣6)2 , 其中3<x<6,a為常數(shù),已知銷售的價格為5元/千克時,每日可以售出該商品11千克.
(1)求a的值;
(2)若該商品的成本為3元/千克,試確定銷售價格x的值,使商場每日銷售該商品所獲得的利潤最大,并求出最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了研究一種昆蟲的產(chǎn)卵數(shù)y和溫度x是否有關(guān),現(xiàn)收集了7組觀測數(shù)據(jù)列于下表中,并做出了散點圖,發(fā)現(xiàn)樣本點并沒有分布在某個帶狀區(qū)域內(nèi),兩個變量并不呈現(xiàn)線性相關(guān)關(guān)系,現(xiàn)分別用模型① 與模型;② 作為產(chǎn)卵數(shù)y和溫度x的回歸方程來建立兩個變量之間的關(guān)系.

溫度x/°C

20

22

24

26

28

30

32

產(chǎn)卵數(shù)y/個

6

10

21

24

64

113

322

t=x2

400

484

576

676

784

900

1024

z=lny

1.79

2.30

3.04

3.18

4.16

4.73

5.77

26

692

80

3.57

1157.54

0.43

0.32

0.00012

其中 ,zi=lnyi , ,
附:對于一組數(shù)據(jù)(μ1 , ν1),(μ2 , ν2),…(μn , νn),其回歸直線v=βμ+α的斜率和截距的最小二乘估計分別為: ,
(1)根據(jù)表中數(shù)據(jù),分別建立兩個模型下y關(guān)于x的回歸方程;并在兩個模型下分別估計溫度為30°C時的產(chǎn)卵數(shù).(C1 , C2 , C3 , C4與估計值均精確到小數(shù)點后兩位)(參考數(shù)據(jù):e4.65≈104.58,e4.85≈127.74,e5.05≈156.02)
(2)若模型①、②的相關(guān)指數(shù)計算分別為 .,請根據(jù)相關(guān)指數(shù)判斷哪個模型的擬合效果更好.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知為奇函數(shù) 為偶函數(shù),

(1)求的解析式及定義域;

(2)若關(guān)于的不等式恒成立求實數(shù)的取值范圍

(3)如果函數(shù),若函數(shù)有兩個零點求實數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖四邊形ABCD為邊長為2的菱形,G為AC與BD交點,平面BED⊥平面ABCD,BE=2,AE=2
(Ⅰ)證明:BE⊥平面ABCD;
(Ⅱ)若∠ABC=120°,求直線EG與平面EDC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在如圖所示的幾何體中,四邊形是正方形, 平面, 分別為的中點,且.

(1)求證:平面平面;

(2)求證:平面平面

(3)求三棱錐與四棱錐的體積之比.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知{an}是等比數(shù)列,a1=2,且a1 , a3+1,a4成等差數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)若bn=log2an , 求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) ,且曲線 在點 處的切線斜率為-3.
(Ⅰ)求 單調(diào)區(qū)間;
(Ⅱ)求 的極值.

查看答案和解析>>

同步練習冊答案