6.已知等差數(shù)列{an}中,公差d≠0,a1=2,且a1,a3,a9成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)數(shù)列{bn}滿足${b_n}={2^{a_n}}+1$,求數(shù)列{bn}的前n項(xiàng)和sn

分析 (1)運(yùn)用等比數(shù)列的中項(xiàng)的性質(zhì),結(jié)合等差數(shù)列的通項(xiàng)公式,解方程可得d,進(jìn)而得到所求通項(xiàng)公式;
(2)求得${b_n}={2^{a_n}}+1$=22n+1=4n+1,再由數(shù)列的求和方法:分組求和,結(jié)合等比數(shù)列的求和公式,計(jì)算即可得到所求和.

解答 解:(1)等差數(shù)列{an}中,公差d≠0,a1=2,且a1,a3,a9成等比數(shù)列,
可得a32=a1a9,
即有(2+2d)2=2(2+8d),
解得d=2(0舍去),
則數(shù)列{an}的通項(xiàng)公式an=2+2(n-1)=2n;
(2)滿足${b_n}={2^{a_n}}+1$=22n+1=4n+1,
即有前n項(xiàng)和sn=(4+16+…+4n)+n
=$\frac{4(1-{4}^{n})}{1-4}$+n,
故數(shù)列{bn}的前n項(xiàng)和${s_n}=\frac{4}{3}({4^n}-1)+n$.

點(diǎn)評(píng) 本題考查等差數(shù)列的通項(xiàng)公式和等比數(shù)列的中項(xiàng)的性質(zhì),以及等比數(shù)列的求和公式的運(yùn)用,考查數(shù)列的求和方法:分組求和,考查運(yùn)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知函數(shù)f(x)=$\sqrt{2}$sinωx+$\sqrt{2}$cosωx(ω>0),在區(qū)間(-$\frac{π}{3}$,$\frac{π}{4}$)上單調(diào)遞增,則ω的取值范圍為( 。
A.(0,1]B.[1,2)C.[$\frac{1}{3}$,2)D.(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.直線mx+(m+2)y-1=0與直線(m-1)x+my=0互相垂直,則m=0或-$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知橢圓C的對(duì)稱中心為坐標(biāo)原點(diǎn)O,焦點(diǎn)在x軸上,左右焦點(diǎn)分別為F1,F(xiàn)2,上頂點(diǎn)和右頂點(diǎn)分別為B,A,線段AB的中點(diǎn)為D,且${k_{DD}}•{k_{AN}}=\frac{1}{2}$,△AOB的面積為$2\sqrt{2}$.
(1)求橢圓C的方程;
(2)過(guò)F1的直線l與橢圓C相交于M,N兩點(diǎn),若△MF2N的面積為$\frac{16}{3}$,求以F2為圓心且與直線l相切的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.若x,y∈R,且滿足$\left\{\begin{array}{l}x≥1\\ x-2y+3≥0\\ y≥x\end{array}$則z=2x+3y的最大值等于15.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.若點(diǎn)P為△ABC某兩邊的垂直平分線的交點(diǎn),且$\overrightarrow{PA}+\overrightarrow{PB}-\overrightarrow{PC}=\overrightarrow 0$,則∠ACB=( 。
A.$\frac{π}{2}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知曲線C的極坐標(biāo)方程為${ρ^2}=\frac{36}{{4{{cos}^2}θ+9{{sin}^2}θ}}$,若P(x,y)是曲線C上的一個(gè)動(dòng)點(diǎn),則3x+4y的最大值為$\sqrt{145}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.有兩個(gè)等差數(shù)列2,6,10,…,190及2,8,14,…,200,由這兩個(gè)等差數(shù)列的公共項(xiàng)按從小到大的順序組成一個(gè)新數(shù)列,則這個(gè)新數(shù)列的前10項(xiàng)之和為560.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.不等式$-\sqrt{3}<tanx<2$的解集是( 。
A.$\left\{{x\left|{kπ-\frac{π}{3}<x<kπ+arctan2\;,\;\;k∈Z}\right.}\right\}$B.$\left\{{x\left|{kπ+arctan2<x<kπ+\frac{2π}{3}\;,\;\;k∈Z}\right.}\right\}$
C.$\left\{{x\left|{2kπ-\frac{π}{3}<x<2kπ+arctan2\;,\;\;k∈Z}\right.}\right\}$D.$\left\{{x\left|{2kπ+arctan2<x<2kπ+\frac{2π}{3}\;,\;\;k∈Z}\right.}\right\}$

查看答案和解析>>

同步練習(xí)冊(cè)答案