1.已知某幾何體的三視圖如圖所示,則該幾何體的外接球表面積為(  )
A.$\frac{8π}{3}$B.32πC.D.8$\sqrt{2}$π

分析 由三視圖可知:該幾何體為一個(gè)三棱錐P-ABC,PA⊥底面ABC,BC⊥AC.該幾何體可以補(bǔ)成一個(gè)長(zhǎng)方體,即可得出.

解答 解:由三視圖可知:該幾何體為一個(gè)三棱錐P-ABC,PA⊥底面ABC,BC⊥AC.
該幾何體可以補(bǔ)成一個(gè)長(zhǎng)方體,∴該幾何體的外接球的半徑R滿足:
(2R)2=${2}^{2}+(\sqrt{2})^{2}×2$=8,
∴外接球的表面積為4πR2=8π.
故選:C.

點(diǎn)評(píng) 本題考查了三棱錐的三視圖、長(zhǎng)方體與外接球的關(guān)系,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知i為虛數(shù)單位,若復(fù)數(shù)z滿足z+z•i=2,則z的虛部為(  )
A.iB.1C.-iD.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知點(diǎn)A(-3,4),圓C:(x-1)2+(y-2)2=1,若一光線經(jīng)過(guò)點(diǎn)A并經(jīng)x軸反射后能經(jīng)過(guò)圓C上的某一點(diǎn),求入射線與x軸交點(diǎn)的橫坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知函數(shù)f(x)=$\left\{\begin{array}{l}{-{x}^{2}-2x,x≤0}\\{{x}^{2}-4x+3,x>0}\end{array}\right.$,g(x)=$\left\{\begin{array}{l}{{e}^{x},x≤0}\\{|lnx|,x>0}\end{array}\right.$,則函數(shù)h(x)=g(f(x))-1的零點(diǎn)個(gè)數(shù)為( 。﹤(gè).
A.7B.8C.9D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)短軸的兩個(gè)頂點(diǎn)與右焦點(diǎn)的連線構(gòu)成等邊三角形,直線3x+4y+6=0與圓x2+(y-b)2=a2相切.
(1)求橢圓C的方程;
(2)已知過(guò)橢圓C的左頂點(diǎn)A的兩條直線l1,l2分別交橢圓C于M,N兩點(diǎn),且l1⊥l2,求證:直線MN過(guò)定點(diǎn),并求出定點(diǎn)坐標(biāo);
(3)在(2)的條件下求△AMN面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知圓O:x2+y2=4,直線$l:x+\sqrt{2}y-6=0$,則圓O上任意一點(diǎn)A到直線l的距離小于$\sqrt{3}$的概率為(  )
A.$\frac{π}{6}$B.$\frac{1}{3}$C.$\frac{π}{12}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.如圖,正方體ABCD-A1B1C1D1的棱長(zhǎng)為1,線段B1D1上有兩個(gè)動(dòng)點(diǎn)E,F(xiàn),且EF=$\frac{\sqrt{2}}{2}$,給出下列結(jié)論:
(1)AC⊥BE;
(2)EF∥平面ABCD;
(3)三棱錐A-BEF的體積為定值;
(4)異面直線AE,BF所成的角為定值.
其中錯(cuò)誤的結(jié)論有(  )
A.0個(gè)B.1 個(gè)C.2個(gè)D.3個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知集合A={x|y=lg(2-x)},集合B={x|$\frac{1}{4}$≤2x≤4},則A∩B=( 。
A.{x|x≥-2}B.{x|-2<x<2}C.{x|-2≤x<2}D.{x|x<2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.在直角坐標(biāo)系xOy中,角α的頂點(diǎn)為坐標(biāo)原點(diǎn),始邊在x軸的正半軸上.
(1)當(dāng)角α的終邊為射線l:y=2$\sqrt{2}$x (x≥0)時(shí),求cos(α+$\frac{π}{6}$)的值;
(2)已知$\frac{π}{6}$≤α≤$\frac{3π}{4}$,試求$\frac{3}{2}$sin2α+$\sqrt{3}$cos2α-$\frac{\sqrt{3}}{2}$的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案