【題目】橢圓的右焦點為,為圓與橢圓的一個公共點,.

(Ⅰ)求橢圓的標準方程;

(Ⅱ)如圖,過作直線與橢圓交于,兩點,點為點關于軸的對稱點.

(1)求證:;

(2)試問過的直線是否過定點?若是,請求出該定點;若不是,請說明理由.

【答案】(Ⅰ);(Ⅱ)(1)見解析;(2)見解析

【解析】

(Ⅰ)根據(jù)題意布列關于a,b的方程組,即可得到橢圓的標準方程;

(Ⅱ)(1)由題意,設的方程為,聯(lián)立方程可得,利用韋達定理即可得到結(jié)果;(2)直線的方程為,可化為 .從而得到定點.

(Ⅰ)解:設是橢圓的左焦點,連接,,.

,∴.

.

.∴.

又∵,,∴.

∴橢圓的標準方程為.

(Ⅱ)(1)證明:① 當直線斜率為0時,的方程為,∴,等式顯然成立;

②當直線斜率不為0時,由題意,設的方程為.

,點為點關于軸的對稱點,則.

整理,得.

,.

.

∴等式成立.

(2)解:過的直線過定點.

①當直線斜率不為0時,∵,

∴直線的方程為,

.

由(1)可知,,

.

.

∴過,的直線過定點;

②當直線斜率為0時,的方程為,直線也過定點.

綜上可知,過,的直線過定點.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某理財公司有兩種理財產(chǎn)品.這兩種理財產(chǎn)品一年后盈虧的情況如下(每種理財產(chǎn)品的不同投資結(jié)果之間相互獨立):

產(chǎn)品

產(chǎn)品(其中

(Ⅰ)已知甲、乙兩人分別選擇了產(chǎn)品和產(chǎn)品進行投資,如果一年后他們中至少有一人獲利的概率大于,求的取值范圍;

(Ⅱ)丙要將家中閑置的10萬元錢進行投資,以一年后投資收益的期望值為決策依據(jù),在產(chǎn)品和產(chǎn)品之中選其一,應選用哪個?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在空間幾何體ABCDFE中,底面是邊長為2的正方形,,.

(1)求證:AC//平面DEF;

(2)已知,若在平面上存在點,使得平面,試確定點的位置.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】“雙十一網(wǎng)購狂歡節(jié)”源于淘寶商城(天貓)2009年11月11日舉辦的促銷活動,當時參與的商家數(shù)量和促銷力度均有限,但營業(yè)額遠超預想的效果,于是11月11日成為天貓舉辦大規(guī)模促銷活動的固定日期.如今,中國的“雙十一”已經(jīng)從一個節(jié)日變成了全民狂歡的“電商購物日”.某淘寶電商為分析近8年“雙十一”期間的宣傳費用(單位:萬元)和利潤(單位:十萬元)之間的關系,搜集了相關數(shù)據(jù),得到下列表格:

(1)請用相關系數(shù)說明之間是否存在線性相關關系(當時,說明之間具有線性相關關系);

(2)建立關于的線性回歸方程(系數(shù)精確到),預測當宣傳費用為萬元時的利潤,

附參考公式:回歸方程最小二乘估計公式分別為

,,相關系數(shù)

參考數(shù)據(jù):

,,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校高二(20)班共50名學生,在期中考試中,每位同學的數(shù)學考試分數(shù)都在區(qū)間內(nèi),將該班所有同學的考試分數(shù)分為七個組:,,,,,繪制出頻率分布直方圖如圖所示.

(1)根據(jù)頻率分布直方圖,估計這次考試學生成績的中位數(shù)和平均數(shù);

(2)已知成績?yōu)?04分或105分的同學共有3人,現(xiàn)從成績在中的同學中任選2人,則至少有1人成績不低于106分的概率為多少?(每位同學的成績都為整數(shù))

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】公交車的數(shù)量太多容易造成資源浪費,太少又難以滿足乘客的需求,為了合理布置車輛,公交公司在2路車的乘客中隨機調(diào)查了50名乘客,經(jīng)整理,他們候車時間(單位:)的莖葉圖如下:

(Ⅰ)將候車時間分為八組,作出相應的頻率分布直方圖;

(Ⅱ)若公交公司將2路車發(fā)車時間調(diào)整為每隔15發(fā)一趟車,那么上述樣本點將發(fā)生變化(例如候車時間為9的不變,候車時間為17的變?yōu)?/span>2),現(xiàn)從2路車的乘客中任取5人,設其中候車時間不超過10的乘客人數(shù)為,求的數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4—5:不等式選講

已知函數(shù)

1)當時,解不等式;

2)若存在實數(shù),使得不等式成立,求實的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓,圓過點且與圓相切,設圓心的軌跡為曲線

(1)求曲線的方程;

(2)點,為曲線上的兩點(不與點重合),記直線的斜率分別為,若,請判斷直線是否過定點. 若過定點,求該定點坐標,若不過定點,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知過拋物線的焦點,斜率為的直線交拋物線于兩點,且.

(1)求該拋物線的方程;

(2) 為坐標原點,為拋物線上一點,若,求的值.

查看答案和解析>>

同步練習冊答案