極坐標(biāo)方程ρcos2θ=4sin θ所表示的曲線是(  )
A、一條直線B、一個(gè)圓
C、一條拋物線D、一條雙曲線
考點(diǎn):簡(jiǎn)單曲線的極坐標(biāo)方程
專題:坐標(biāo)系和參數(shù)方程
分析:利用
x=ρcosθ
y=ρsinθ
即可把極坐標(biāo)方程化為直角坐標(biāo)方程,即可判斷出.
解答: 解:極坐標(biāo)方程ρcos2θ=4sinθ化為ρ2cos2θ=4ρsinθ,
∴x2=4y.
因此極坐標(biāo)方程ρcos2θ=4sin θ所表示的曲線是一條拋物線.
故選:C.
點(diǎn)評(píng):本題考查了把極坐標(biāo)方程化為直角坐標(biāo)方程,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是定義域?yàn)镽的偶函數(shù),且滿足f(x)=f(x+2),若f(x)在[-1,0]上是減函數(shù),那么f(x)在[2,3]上是( 。
A、增函數(shù)B、減函數(shù)
C、先增后減函數(shù)D、先減后增函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,已知角α的終邊經(jīng)過點(diǎn)P(a,a-3),且cosα=
5
5
,則a=( 。
A、1
B、
9
2
C、1或
9
2
D、1或3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知|
a
|=3,|
b
|=1,且
a
b
方向相同,則
a
b
的值是( 。
A、3B、-3C、0D、-3或3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

變換
10
0-1
p
q
=
p
-q
的幾何意義為( 。
A、關(guān)于y軸反射變換
B、關(guān)于x軸反射變換
C、關(guān)于原點(diǎn)反射變換
D、以上都不對(duì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知平面向量
a
=(2,1),
b
=(x,-2),且
a
b
,則x=( 。
A、-3B、3C、-1D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某單位為了提高員工素質(zhì),舉辦了一場(chǎng)跳繩比賽,其中男員工12人,女員工18人,其成績(jī)編成如圖所示的莖葉圖(單位:分),分?jǐn)?shù)在175分以上(含175分)者定為“運(yùn)動(dòng)健將”,并給予特別獎(jiǎng)勵(lì),其他人員則給予“運(yùn)動(dòng)積極分子”稱號(hào).
(1)若用分層抽樣的方法從“運(yùn)動(dòng)健將”和“運(yùn)動(dòng)積極分子”中抽取10人,然后再從這10人中選4人,求至少有1人是“運(yùn)動(dòng)健將”的概率;
(2)若從所有“運(yùn)動(dòng)健將”中選3名代表,求所選代表中女“運(yùn)動(dòng)健將”恰有2人的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2cos2
x
2
-
3
sinx.
(I)求 x∈[
2
3
π,
5
4
π]時(shí)函數(shù)f(x)的單調(diào)區(qū)間和值域;
(II)若α為第二象限角,且f(α-
π
3
)=
1
3
,求
cos2α
1+cos2α-sin2α
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+2ax+b
(Ⅰ)若a是從0,1,2三個(gè)數(shù)中任取的一個(gè)數(shù),b是從0,1,2,3四個(gè)數(shù)中任取的一個(gè)數(shù),求f(x)為偶函數(shù)的概率;
(Ⅱ)若a=1,b是從區(qū)間[0,3]任取的一個(gè)數(shù),求方程f(x)=0有實(shí)根的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案